Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The metabolome and transcriptome of the maize-infecting fungi Ustilago maydis and Fusarium verticillioides were analyzed as the two fungi interact. Both fungi were grown for 7 days in liquid medium alone or together in order to study how this interaction changes their metabolomic and transcriptomic profiles. When grown together, decreased biomass accumulation occurs for both fungi after an initial acceleration of growth compared to the biomass changes that occur when grown alone. The biomass of U. maydis declined most severely over time and may be attributed to the action of F. verticillioides, which secretes toxic secondary metabolites and expresses genes encoding adhesive and cell wall-degrading proteins at higher levels than when grown alone. U. maydis responds to cocultivation by expressing siderophore biosynthetic genes and more highly expresses genes potentially involved in toxin biosynthesis. Also, higher expression was noted for clustered genes encoding secreted proteins that are unique to U. maydis and that may play a role during colonization of maize. Conversely, decreased gene expression was seen for U. maydis genes encoding the synthesis of ustilagic acid, mannosylerythritol D, and another uncharacterized metabolite. Ultimately, U. maydis is unable to react efficiently to the toxic response of F. verticillioides and proportionally loses more biomass. This in vitro study clarifies potential mechanisms of antagonism between these two fungi that also may occur in the soil or in maize, niches for both fungi where they likely interact in nature.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3346380 | PMC |
http://dx.doi.org/10.1128/AEM.07841-11 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!