Purpose: Pulmonary vein antrum isolation (PVAI) guided by intracardiac echocardiography and a roaming circular mapping catheter is an effective treatment modality for atrial fibrillation. Unfortunately, the complexity of this technique leads to long procedure times and high fluoroscopy exposure. Single-catheter multipolar ablation holds the promise to reduce these parameters. This study examined the effect of the conventional point-by-point PVAI with that of single-catheter multipolar ablation on the procedural characteristics and clinical outcomes of atrial fibrillation ablation.
Methods: Referred patients underwent PVAI guided by a magnetic-based 3D mapping (CARTO 3(®) System; group 1) or duty-cycled multipolar AF ablation using the pulmonary vein ablation catheter (PVAC, group 2) between June 2010 and May 2011.
Results: Data were analyzed from 19 patients in group 1 and 31 patients in group 2. There was no significant difference in the length of the procedure between the two groups (135 ± 26 vs 125 ± 25 min, P = 0.20). Patients who underwent ablation using PVAC spent significantly less time in the procedure room pre- and post-procedure than those who underwent conventional PVAI (205 ± 38 vs 179 ± 30 min, P = 0.02) and had a significantly shorter fluoroscopy exposure (50 ± 16 vs 36 ± 14 min, P = 0.003) and radiofrequency energy delivery time (54 ± 26 vs 32 ± 33 min, P = 0.02). No differences in safety and efficacy were seen between the groups.
Conclusions: Single-catheter multipolar AF ablation was associated with significantly lower fluoroscopy duration, radiofrequency energy delivery time, and the time the patient spent in the procedure room before and after ablation, although measured short-term clinical outcomes were similar.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10840-012-9676-3 | DOI Listing |
Introduction: Differences in predictability of ablation success for premature ventricular contractions (PVCs) between earliest isochronal map area (EIA), local activation time (LAT) differences on unipolar and bipolar electrograms (⊿LAT), LAT prematurity on bipolar electrograms (LAT), and unipolar morphology of QS or Q pattern remain unclear. We verified multiple statistical predictabilities of those indicators of ablation success on mapped cardiac surface.
Methods: Thirty-five patients with multiple PVCs underwent catheter ablation after LAT mapping using multipolar mapping catheters with unipolar-based annotation.
Heart Rhythm
November 2024
Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA.
Background: Atriofascicular fibers (AFFs) are rare accessory pathways that have higher rates of recurrence after ablation because of either failure to identify AFF (M) potentials or mechanical termination with contact.
Objective: We aimed to evaluate whether electroanatomic mapping (EAM) using multielectrode, high-density nonlinear catheters can reliably localize AFF potentials and determine a site for ablation without causing mechanical termination.
Methods: Seven patients underwent electrophysiology studies (EPS) and EAM using high-density, multielectrode catheters for antidromic tachycardia using AFFs.
J Cardiovasc Electrophysiol
December 2024
Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czechia.
Heart Rhythm
October 2024
Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland; Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland. Electronic address:
Background: In atrial fibrillation (AF) management, understanding left atrial (LA) substrate is crucial. While both electroanatomic mapping (EAM) and late gadolinium enhancement magnetic resonance imaging (LGE-MRI) are accepted methods for assessing the atrial substrate and are associated with ablation outcome, recent findings have highlighted discrepancies between low-voltage areas (LVAs) in EAM and LGE areas.
Objective: The purpose of this study was to explore the relationship between LGE regions and unipolar and bipolar LVAs using multipolar high-density mapping.
J Cachexia Sarcopenia Muscle
December 2024
CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!