Recovery and concentration of antioxidants from winery wastes.

Molecules

Departamento de Enxeñaría Química, Universidade de Vigo (Campus Ourense), Edificio Politécnico, As Lagoas, Ourense 32004, Spain.

Published: March 2012

Grape and wine byproducts have been extensively studied for the recovery of phenolic compounds with antioxidant activity and a variety of biological actions. The selective recovery and concentration of the phenolic compounds from the liquid phase separated from further diluted winery wastes has been proposed. Adsorption onto non ionic polymeric resins and further desorption with ethanolic solutions was studied. Several commercial food grade resins were screened with the aim of selecting the most suited for the practical recovery of phenolic compounds with radical scavenging activity. Under the optimized desorption conditions (using Sepabeads SP207 or Diaion HP20 as adsorbents and eluting with 96% ethanol at 50 °C) a powdered yellow-light brown product with 50% phenolic content, expressed as gallic acid equivalents, was obtained. The radical scavenging capacity of one gram of product was equivalent to 2-3 g of Trolox.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6268800PMC
http://dx.doi.org/10.3390/molecules17033008DOI Listing

Publication Analysis

Top Keywords

phenolic compounds
12
recovery concentration
8
winery wastes
8
recovery phenolic
8
radical scavenging
8
recovery
4
concentration antioxidants
4
antioxidants winery
4
wastes grape
4
grape wine
4

Similar Publications

Xanthomonas citri pv. malvacearum (Xcm) associated with bacterial blight disease is a significant and widespread pathogen affecting cotton worldwide. The excessive use of harmful chemicals to control plant pathogens has exerted a negative impact on environmental safety.

View Article and Find Full Text PDF

Self-sufficient biocatalytic cascade for the continuous synthesis of danshensu in flow.

Appl Microbiol Biotechnol

January 2025

Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland.

A new strategy has been developed to successfully produce the active component danshensu ex vivo. For this purpose, phenylalanine dehydrogenase from Bacillus sphaericus was combined with the novel hydroxyphenylpyruvate reductase from Mentha x piperita, thereby providing an in situ cofactor regeneration throughout the conversion process. The purified enzymes were co-immobilized and subsequently employed in batch biotransformation, resulting in 60% conversion of 10 mM L-dopa within 24 h, with a catalytic amount of NAD as cofactor.

View Article and Find Full Text PDF

Biological activities of lichen extracts and UHPLC-ESI-QTOF-MS analysis of their secondary metabolites.

Front Pharmacol

January 2025

Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.

This research was designed to investigate the metabolite profiling, phenolics content, and the trypanocidal, nematicidal, antibacterial, antifungal, and free radical scavenging properties of Motyka. The air-dried material was extracted successively with dichloromethane and methanol (UlMeOH). Two phases were obtained from the extract with dichloromethane, one soluble in methanol (UlDCM-s) and the other insoluble (UlDCM-i).

View Article and Find Full Text PDF

Chongqing Old Rose is an ancient edible rose variety native to Chongqing, China, but is under-reported. Further evidence is required to fully establish its potential benefits. The complete metabolic profiles were examined for comparative analysis between the Old Rose and three rose cultivars.

View Article and Find Full Text PDF

Inorganic anions such as chloride (Cl), nitrate (), sulfate (), carbonate (), bicarbonate (), dihydrogen phosphate (), fluoride (F) are ubiquitous in water matrices, play a significant role in the degradation of organic pollutants by Fenton process. In the present study, the performance of Fenton process in the presence of these anions was studied using phenol as a model compound along with the underlying mechanism and their tolerance limit. The presence of these anions affects the rate constant of the Fenton process and decreases in the following order, ---Cl >  >  >  > F.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!