We have investigated within Fermi liquid theory the dependence of Coulomb drag current in a passive quantum wire on the applied voltage V across an active wire and on the temperature T for any values of eV/k(B)T. We assume that the bottoms of the 1D minibands in both wires almost coincide with the Fermi level. We conclude that: (1) within a certain temperature interval the drag current can be a descending function of the temperature T; (2) the experimentally observed temperature dependence T(-0.77) of the drag current can be interpreted within the framework of Fermi liquid theory; (3) at relatively high applied voltages the drag current saturates as a function of the applied voltage; and (4) the screening of the electron potential by metallic gate electrodes can be of importance.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/24/13/135304DOI Listing

Publication Analysis

Top Keywords

drag current
16
temperature dependence
8
coulomb drag
8
fermi liquid
8
liquid theory
8
applied voltage
8
temperature
5
drag
5
dependence ballistic
4
ballistic coulomb
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!