Biofilms on biomaterial implants are hard to eradicate with antibiotics due to the protection offered by the biofilm mode of growth, especially when caused by antibiotic-resistant strains. Superparamagnetic iron oxide nanoparticles (SPIONs) are widely used in various biomedical applications, such as targeted drug delivery and magnetic resonance imaging. Here, we evaluate the hypothesis that SPIONs can be effective in the treatment of biomaterial-associated infection. SPIONs can be targeted to the infection site using an external magnetic field, causing deep penetration in a biofilm and possibly effectiveness against antibiotic-resistant strains. We report that carboxyl-grafted SPIONs, magnetically concentrated in a biofilm, cause an approximately 8-fold higher percentage of dead staphylococci than does gentamicin for a gentamicin-resistant strain in a developing biofilm. Moreover, magnetically concentrated carboxyl-grafted SPIONs cause bacterial killing in an established biofilm. Thus magnetic targeting of SPIONs constitutes a promising alternative for the treatment of costly and recalcitrant biomaterial-associated infections by antibiotic-resistant strains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2012.03.002 | DOI Listing |
IJID Reg
March 2025
Department of Pharmacy Practice, School of Pharmacy, IMU University, Kuala Lumpur, Malaysia.
A systematic review was conducted to critically analyze the outbreaks, efficacy, and safety of drugs used to treat various infections. Four drugs-azithromycin, ceftriaxone, ciprofloxacin, and amoxicillin-are commonly used to treat infections, and all four drugs were included in this review. This review found that, of these, azithromycin and ceftriaxone were more effective in treating infections based on the patient's length of stay in the hospital and the rate at which the fever was resolved.
View Article and Find Full Text PDFMater Today Bio
February 2025
Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, PR China.
The rise of antibiotic resistance poses a significant and ongoing challenge to public health, with pathogenic bacteria remaining a persistent threat. Traditional culture methods, while considered the gold standard for bacterial detection and viability assessment, are time-consuming and labor-intensive. To address this limitation, we developed a novel point-of-care (POC) detection method leveraging citrate- and alkyne-modified gold nanorods (AuNRs) synthesized with click chemistry properties.
View Article and Find Full Text PDFViruses
January 2025
Laboratory of Molecular Microbiology, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia.
is an important opportunistic pathogen often resistant to antibiotics. Specific phages can be useful in eliminating infection caused by . phage vB_KlebPS_265 (KlebP_265) and its host strain were isolated from the sputum of a patient with infection.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Laboratoire d'Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco.
Background/objectives: The rise of antibiotic-resistant pathogens has become a global health crisis, necessitating the development of alternative antimicrobial strategies. This study aimed to optimize the antibacterial effects of essential oils (EOs) from , , and , enhancing their efficacy through optimized mixtures.
Methods: This study utilized a simplex-centroid design to optimize the mixture ratios of EOs for maximal antibacterial and antioxidant effectiveness.
Pathogens
January 2025
Research and Production Center for Microbiology and Virology, Almaty 050010, Kazakhstan.
While studying the prevalence and profile of antibiotic resistance among isolated from the feces of calves with signs of colibacillosis, a strain with a wide spectrum of drug resistance was isolated. Whole-genome sequencing, followed by bioinformatic processing and the annotation of genes of this strain, showed that the genome has a total length of 4,803,482 bp and contains 4986 genes, including 122 RNA genes. A total of 31% of the genes are functionally significant and represent 26 functional groups.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!