Rapid presymptomatic diagnosis of Bacillus anthracis at early stages of infection plays a crucial role in prompt medical intervention to prevent rapid disease progression and accumulation of lethal levels of toxin. To detect low levels of the anthrax protective antigen (PA) exotoxin in biological fluids, we have developed a metal-enhanced fluorescence (MEF)-PA assay using a combination of the MEF effect and microwave-accelerated PA protein surface absorption. The assay is based on a modified version of our "rapid catch and signal" (RCS) technology previously designed for the ultra-fast and sensitive analysis of genomic DNA sequences. Technologically, the proposed MEF-PA assay uses standard 96-well plastic plates modified with silver island films (SiFs) grown within the wells. It is shown that the fluorescent probe, covalently attached to the secondary antibody, plays a crucial role of indicating complex formation (i.e., shows a strong MEF response to the recognition event). Microwave irradiation rapidly accelerates PA deposition onto the surface ("rapid catch"), significantly speeding up the MEF-PA assay and resulting in a total assay run time of less than 40 min with an analytical sensitivity of less than 1 pg/ml PA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ab.2012.02.040 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!