Analysis using fish of sperm and embryos from two carriers of rare rob(13;21) and rob(15;22) robertsonian translocation undergoing PGD.

Eur J Med Genet

Unité de Cytogénétique DPI, Département de Biologie de la Reproduction, CHU Montpellier, Hôpital Arnaud de Villeneuve, 34295 Montpellier, France.

Published: April 2012

AI Article Synopsis

  • This study examined the meiotic segregation of rare Robertsonian translocations (rob(13; 21) and rob(15; 22)) using fluorescence in situ hybridization (FISH) for the first time, focusing on sperm and embryos after pre-implantation genetic diagnosis (PGD).
  • Results showed that a high percentage of gametes from both patients (86.3% and 87.5%) produced normal or balanced chromosomes.
  • Among their embryos, only 25% and 46% were balanced, with a significant portion of unbalanced embryos being mosaic or chaotic, indicating potential risks for chromosomal abnormalities and suggesting a need for improved genetic counseling.

Article Abstract

The majority of fluorescence in situ hybridization (FISH) studies on the meiotic segregation of Robertsonian translocations focus on the most common types, rob(13; 14) and rob(14; 21). Here we report the first study for carriers of rare Robertsonian translocations rob(13; 21) and rob(15; 22) combining analysis of meiotic segregation in sperm and blastomeres following pre-implantation genetic diagnosis (PGD). Dual-colour FISH was applied to nuclei from spermatozoa and blastomeres from PGD embryos using two subterminal contig probes for each translocation, and a second round with probes for chromosomes 16 and 18. Patient 1 had a rob(13; 21) and patient 2 had a rob(15; 22), and 86.3% and 87.5% of gametes respectively were consistent with meiotic segregation resulting in a normal or balanced chromosome complement. Analysis of embryos showed that for patient 1 and 2 respectively, 25% and 46% were balanced, and of the unbalanced embryos, 50% and 31% were mosaic or chaotic. Our patients with a rob(13; 21) and rob(15; 22) were found to have a similar meiotic segregation pattern to that for male carriers of the common Robertsonian translocations. The observed rate in unbalanced embryos being mosaic or chaotic may result in an increased risk of chromosomal abnormalities. Our results may help to improve the genetic counseling for carriers of rare Robertsonian translocations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmg.2012.02.003DOI Listing

Publication Analysis

Top Keywords

meiotic segregation
16
robertsonian translocations
16
carriers rare
12
rare robertsonian
8
rob13 rob15
8
unbalanced embryos
8
mosaic chaotic
8
embryos
5
robertsonian
5
analysis fish
4

Similar Publications

Microsatellite markers are widely used in aquaculture for genetic analysis and breeding programs, but challenges such as segregation distortion and allelic instability can impact their effectiveness in parentage verification and inheritance studies. This study evaluated 15 microsatellite loci in seven experimental olive flounder () families bred through 1:1 full-sibling crosses, assessing their utility for accurate parentage and inheritance stability. Parentage assignments were conducted within an expanded pool of 647 candidate parents (including the actual 14 parents), encompassing both closely related and moderately distant individuals.

View Article and Find Full Text PDF

Purpose: This study aimed to investigate the molecular mechanisms associated with chromosome segregation errors caused by intrinsic oxidative stress during in vitro oocyte maturation (IVM) using oocytes from -deficient (KO) mice.

Methods: Ovulated or in vitro matured cumulus-cells oocyte complexes (COCs) were collected from wild-type (WT) and KO mice and evaluated chromosome alignment, chromosome segregation, meiotic progression, and BUBR1 and REC8 protein expression levels.

Results: In 21% O IVM, the KO had significantly higher frequencies of chromosome misalignment and segregation errors compared to the WT, and they also reached Germinal Vesicle Break Down (GVBD) and M I stages peak earlier and showed a shorter M I stage residence time compared to the WT.

View Article and Find Full Text PDF

Meiotic recombination is a powerful source of haplotypic diversity, and thus plays an important role in the dynamics of short-term adaptation. However, high-throughput quantitative measurement of recombination parameters is challenging because of the large size of offspring to be genotyped. One of the most efficient approaches for large-scale recombination measurement is to study the segregation of fluorescent markers in gametes.

View Article and Find Full Text PDF

Kinetic analysis of strand invasion during meiosis reveals similar rates of sister- and homolog-directed repair.

bioRxiv

January 2025

School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT 84112.

Meiotic chromosome segregation requires reciprocal exchanges between the parental chromosomes (homologs). Exchanges are formed via tightly-regulated repair of double-strand DNA breaks (DSBs). However, since repair intermediates are mostly quantified in fixed images, our understanding of the mechanisms that control the progression of repair remains limited.

View Article and Find Full Text PDF

Tests for segregation distortion in tetraploid F1 populations.

Theor Appl Genet

January 2025

Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA.

In tetraploid F1 populations, traditional segregation distortion tests often inaccurately flag SNPs due to ignoring polyploid meiosis processes and genotype uncertainty. We develop tests that account for these factors. Genotype data from tetraploid F1 populations are often collected in breeding programs for mapping and genomic selection purposes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!