Comparison of IMAC and MOAC for phosphopeptide enrichment by column chromatography.

J Chromatogr B Analyt Technol Biomed Life Sci

UMR 5248, CNRS-UBx1-IPB, Centre de Génomique Fonctionnelle, Université de Bordeaux, BP 68, 146 Rue Léo Saignat, 33076 Bordeaux, France.

Published: April 2012

AI Article Synopsis

  • The study investigates automated phosphopeptide enrichment using two methods: Immobilized Metal Affinity Chromatography (IMAC) with POROS-Fe³⁺ and Metal Oxide Affinity Chromatography (MOAC) with TiO₂, focusing on peptide samples from casein-albumin and mouse liver.
  • Selectivity of both methods was found to be pH-dependent, with notable increases when using 0.1 M acetic acid or trifluoroacetic acid, especially in complex liver extracts.
  • However, while the TiO₂ columns maintained stability and reliability, the POROS-Fe³⁺ columns experienced a decrease in phosphopeptide identification due to strong Fe³⁺ leaching and

Article Abstract

Automated phosphopeptide enrichment prior to MS analysis by means of Immobilized Metal Affinity Chromatography (IMAC) and Metal Oxide Affinity Chromatography (MOAC) has been probed with packed columns. We compared POROS-Fe³⁺ and TiO₂ (respectively IMAC and MOAC media), using a simple mixture of peptides from casein-albumin and a complex mixture of peptides isolated from mouse liver. With theses samples, selectivity of POROS-Fe³⁺ and TiO₂ were pH dependant. In the case of liver extract, selectivity increased from 12-18% to 58-60% when loading buffer contained 0.1 M acetic acid or 0.1 M trifluoroacetic acid, respectively. However, with POROS-Fe³⁺ column, the number of identifications decreased from 356 phosphopeptides with 0.1 M acetic acid to 119 phosphopeptides with 0.1 M TFA. This decrease of binding capacity of POROS-Fe³⁺ was associated with strong Fe³⁺ leaching. Furthermore, repetitive use of IMAC-Fe³⁺ with the 0.5 M NH₄OH solution required for phosphopeptide elution induced Fe₂O₃ accumulation in the column. By comparison, MOAC columns packed with TiO₂ support do not present any problem of stability in the same conditions and provide a reliable solution for packed column phosphopeptide enrichment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jchromb.2012.02.028DOI Listing

Publication Analysis

Top Keywords

phosphopeptide enrichment
12
imac moac
8
affinity chromatography
8
poros-fe³⁺ tio₂
8
mixture peptides
8
acetic acid
8
comparison imac
4
moac
4
phosphopeptide
4
moac phosphopeptide
4

Similar Publications

Glioblastoma (GBM) is a devastating malignant brain tumor with a poor prognosis. GBM is associated with radioresistance. Post-translational modifications (PTMs) such as protein phosphorylation can play an important role in the cellular response to radiation.

View Article and Find Full Text PDF

Phosphoproteins maintain the normal metabolic activity of the organisms. Direct phosphopeptides detection is difficult to be realized by mass spectroscopy (MS) due to the low ionization efficiency, low abundance of phosphopeptides and interferences of complicated biological fluids. In the present work, a magnetic composite material was prepared by combining polyethyleneimine (PEI) and fluorescein isothiocyanate (FITC) focusing on phosphopeptides enrichment.

View Article and Find Full Text PDF

Protein phosphorylation is an important post-translational modification that regulates almost all cellular processes, such as cellular metabolism, growth, differentiation, signal transduction, and gene regulation. Mass spectrometry, which acts as an automated and sensitive method, enables global analysis of protein phosphorylation. However, several technical challenges need to be addressed when analyzing protein phosphorylation in a global manner.

View Article and Find Full Text PDF

In Situ MXene-Controlled Synthesis of Polycrystalline TiO for Highly Efficient Enrichment of Phosphopeptides.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China.

Phosphopeptide enrichment methods based on commercial TiO suffer from difficulties in regulating intermolecular interactions, resulting in low coverage rate and the loss of information on multiphosphorylation sites, thereby limiting comprehensive phosphoproteomic analysis. In this work, MXene TiCT was incorporated into the design of enrichment materials, with its surface structure functionalized and regulated to address the low elution efficiency of TiO for multiphosphorylated peptides. Upon oxidation treatment, the TiCT material formed numerous uniformly distributed TiO nanoparticles on the surface of TiCT-O, providing abundant affinity sites (Ti-O) for selective phosphopeptide enrichment.

View Article and Find Full Text PDF

Preparation of a titanium-functionalized polymeric material rich in hydrophilic groups for phosphoproteome and glycoproteome analyses in serum.

Analyst

January 2025

Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.

The analysis of protein phosphorylation and glycosylation is critical for investigating disease development. In this work, 1,2-epoxy-5-hexene and ,-methylenebisacrylamide were polymerized with vinyl phosphate to produce a polymer (denoted as PVME), which contained a variety of hydrophilic groups. The material's hydrophilicity was further enhanced by a ring-opening reaction with cysteine (the product was denoted as Cys-PVEM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!