Due to arid conditions, population growth, and anthropogenic impacts from agricultural and urban development, wastewater effluent makes up an increasingly large percentage of surface water supplies promoting concerns about the potential ecological and human health effects associated with the organic quality of surface waters receiving treated wastewater discharge. Anthropogenic inputs alter the quality and quantity of organic carbon and also affect the ability of aquatic ecosystems to retain or transform carbon and other nutrients. In this paper, we use pyrolysis-GC/MS (Py-GC/MS) as a tool to examine whether the dissolved organic carbon (DOC) in suburban streams influenced by anthropogenic inputs displays an organic signature that is structurally different from natural organic material (NOM). Py-GC/MS was not only able to differentiate among stream sites that received discharge from upstream wastewater treatment plants and those that did not, but also distinguished stream sites influenced significantly by storm water. Distinct organic signatures were evident in stream waters with upstream wastewater treatment plant discharges regardless of the distance from effluent discharge, indicative of the persistent nature of effluent-derived organic material (EfOM). The pyrolysis fragments of 3-methyl-pyridine, 2-methyl-pyridine, pyrrole, and acetamide were identified as indicators of EfOM, supporting previous research that has suggested that protein and aminosugar derivitives are possible wastewater markers. Furthermore, pyrolysis fragments associated with soil polycarboxylic acids correlated highly with stream sites having the least anthropogenic influences.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2012.01.043 | DOI Listing |
J Environ Manage
December 2024
State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China.
Although terrestrial organic matter is known to sustain food chains, its impact on zooplankton communities in lakes within urbanized areas remains unclear. This study analyzed a comprehensive, decade-long dataset (1998-2007) that included COD, BOD, and monthly zooplankton records from Lake Taihu to assess the effects of anthropogenic organic matter. Significant spatial variations in COD and BOD were observed across different areas of Lake Taihu (p < 0.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Earth and Planetary Sciences, University of California, Riverside, CA, 92521, USA.
The Salton Sea (SS), California's largest inland lake at 816 square kilometers, formed in 1905 from a levee breach in an area historically characterized by natural wet-dry cycles as Lake Cahuilla. Despite more than a century of untreated agricultural drainage inputs, there has not been a systematic assessment of nutrient loading, cycling, and associated ecological impacts at this iconic waterbody. The lake is now experiencing unprecedented degradation, particularly following the 2003 Quantification Settlement Agreement-the largest agricultural-to-urban water transfer in the United States.
View Article and Find Full Text PDFGlob Chang Biol
December 2024
Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts, USA.
Anthropogenic nitrogen (N) deposition is unequally distributed across space and time, with inputs to terrestrial ecosystems impacted by industry regulations and variations in human activity. Soil carbon (C) content normally controls the fraction of mineralized N that is nitrified (ƒ), affecting N bioavailability for plants and microbes. However, it is unknown whether N deposition has modified the relationships among soil C, net N mineralization, and net nitrification.
View Article and Find Full Text PDFNatl Sci Rev
December 2024
School of Environment, Tsinghua University, Beijing 100084, China.
Global ecosystems face mercury contamination, yet long-term data are scarce, hindering understanding of ecosystem responses to atmospheric Hg input changes. To bridge the data gap and assess ecosystem responses, we compiled and compared a mercury accumulation database from peat, lake, ice and marine deposits worldwide with atmospheric mercury deposition modelled by GEOS-Chem, focusing on trends, magnitudes, spatial-temporal distributions and impact factors. The mercury fluxes in all four deposits showed a 5- to 9-fold increase over 1700-2012, with lake and peat mercury fluxes that generally mirrored atmospheric deposition trends.
View Article and Find Full Text PDFJ Environ Sci Health C Toxicol Carcinog
December 2024
Department of Pharmaceutical Sciences, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
Nitrate contamination in drinking water poses significant health risks, particularly in rapidly urbanizing areas of developing countries. This study presents an integrated computational and graphical approach to evaluate the geochemistry and health risks of nitrate-contaminated water for six age groups in Southeast, Nigeria. The research employed a detailed methodology combining water nutrient pollution index (WNPI), nitrate pollution index (NPI), water pollution index (WPI), geochemical plotting techniques, stoichiometry, and health risk computations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!