Unlabelled: Neural chips, which are capable of simultaneous multisite neural recording and stimulation, have been used to detect and modulate neural activity for almost thirty years. As neural interfaces, neural chips provide dynamic functional information for neural decoding and neural control. By improving sensitivity and spatial resolution, nano-scale electrodes may revolutionize neural detection and modulation at cellular and molecular levels as nano-neuron interfaces. We developed a carbon-nanofiber neural chip with lithographically defined arrays of vertically aligned carbon nanofiber electrodes and demonstrated its capability of both stimulating and monitoring electrophysiological signals from brain tissues in vitro and monitoring dynamic information of neuroplasticity. This novel nano-neuron interface may potentially serve as a precise, informative, biocompatible, and dual-mode neural interface for monitoring of both neuroelectrical and neurochemical activity at the single-cell level and even inside the cell.
From The Clinical Editor: The authors demonstrate the utility of a neural chip with lithographically defined arrays of vertically aligned carbon nanofiber electrodes. The new device can be used to stimulate and/or monitor signals from brain tissue in vitro and for monitoring dynamic information of neuroplasticity both intracellularly and at the single cell level including neuroelectrical and neurochemical activities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3993939 | PMC |
http://dx.doi.org/10.1016/j.nano.2012.02.011 | DOI Listing |
Nanomaterials (Basel)
December 2024
Department of Energy and Power Engineering, North University of China, Taiyuan 038507, China.
The NiCoO Nanosheets@Carbon fibers composites have been successfully synthesized by a facile co-electrodeposition process. The mesoporous NiCoO nanosheets aligned vertically on the surface of carbon fibers and crosslinked with each other, producing loosely porous nanostructures. These hybrid composite electrodes exhibit high specific capacitance in a three-electrode cell.
View Article and Find Full Text PDFJ Vis
January 2025
Magic Leap Switzerland GmbH, Zürich, Switzerland.
When rendering the visual scene for near-eye head-mounted displays, accurate knowledge of the geometry of the displays, scene objects, and eyes is required for the correct generation of the binocular images. Despite possible design and calibration efforts, these quantities are subject to positional and measurement errors, resulting in some misalignment of the images projected to each eye. Previous research investigated the effects in virtual reality (VR) setups that triggered such symptoms as eye strain and nausea.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
The Building Technology Department, Linnæus University, 352 52 Växjö, Sweden.
Timber-concrete composites are established structural elements to combine the advantageous properties of both materials by connecting them. In this work, an innovative flexible adhesive connection in different configurations is investigated. Load-bearing capacity, stiffness, and the failure modes were first experimentally investigated by performing push-out tests.
View Article and Find Full Text PDFNeurospine
December 2024
Department of Orthopedic Surgery, Haeundae Bumin Hospital, Busan, Korea.
Objective: To identify the risk factors for proximal junctional failure (PJF) after adult spinal deformity (ASD) surgery despite ideal sagittal correction according to age-adjusted alignment target.
Methods: The study included patients who underwent low thoracic to pelvic fusion for ASD and obtained ideal correction according to age-adjusted pelvic incidence minus lumbar lordosis. PJF was defined either radiographically as a proximal junctional angle (PJA) of >28° plus a difference in PJA of >22° or clinically as revision surgery for proximal junctional complications.
Clin Spine Surg
January 2025
Department of Orthopedic Surgery, NYU Langone Health, New York, NY.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!