Mx is a structural protein, induced by type I interferon (IFN), with direct antiviral properties. In fish the inherent contribution of Mx protein to viral protection is unknown. The transgenic Chinook salmon embryonic (CHSE)-TOF cell line was genetically modified to express the rainbow trout Mx (rbtMx1) protein under the control of the tetracycline derivative, doxycycline (DOX). Two clones CHSE-TOF-MX8 and CHSE-TOF-MX10 were isolated and characterised by qPCR. The level of resistance to Infectious Pancreatic Necrosis Virus (IPNV), Salmon Alphavirus (SAV), Infectious Haematopoietic Necrosis Virus (IHNV) and Epizootic Haematopoietic Necrosis Virus (EHNV) of the CHSE-TOF, CHSE-TOF-MX8 and CHSE-TOF-MX10 cell lines cultivated with and without DOX was measured. A novel method was established to measure accurately the level of sensitivity of any given viral isolate to Mx protein. IPNV and SAV viruses were highly sensitive to the presence of rbtMx1 in the cells whereas IHNV and EHNV showed partial resistance suggesting contrasting viral evasion strategies between these categories of viruses.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jviromet.2012.01.014DOI Listing

Publication Analysis

Top Keywords

necrosis virus
12
chse-tof-mx8 chse-tof-mx10
8
haematopoietic necrosis
8
protein
5
development vitro
4
vitro system
4
system measure
4
measure sensitivity
4
sensitivity antiviral
4
antiviral protein
4

Similar Publications

Infection with Influenza A virus (IAV) induces severe inflammatory responses and lung injury, contributing significantly to mortality and morbidity rates. Alterations in the microbial composition of the lungs and intestinal tract resulting from infection could influence disease progression and treatment outcomes. Xiyanping (XYP) injection has demonstrated efficacy in clinical treatment across various viral infections.

View Article and Find Full Text PDF

Complete blood count indices and their ratios are associated with adverse clinical outcomes for many acute illnesses, but the mechanisms generating these associations are not fully understood. Recent identification of a consistent pattern of white blood cell and platelet count co-regulation during acute inflammatory recovery provides a potentially unifying explanation. Here we show that the platelet-to-white-cell ratio, which was selected based on this conserved recovery pattern, is more strongly associated with mortality than other blood count markers and ratios in four important illnesses involving acute inflammation: COVID-19, acute heart failure, myocardial infarction, and stroke.

View Article and Find Full Text PDF

Reticuloendotheliosis virus (REV) is a gamma retrovirus that can cause immunosuppression, dwarf syndrome and acute reticulocytoma in poultry. The molecular mechanism by which REV infection leads to immunosuppression and tumorigenesis is poorly understood. In this study, we elucidated the regulatory network of miRNA-mRNA and the major signaling pathways involved in REV-SNV infection.

View Article and Find Full Text PDF

Background: The roles of the Pink1/Parkin pathway and mitophagy in lung injury during heat stroke remain unclear. In this study, we investigated the role of Pink1/Parkin-mediated mitophagy in acute lung injury (ALI) in rats with exertional heat stroke (EHS).

Methods: Sixty Sprague Dawley rats were randomly divided into control (CON), control + Parkin overexpression (CON + Parkin), EHS, and EHS + Parkin overexpression (EHS + Parkin) groups.

View Article and Find Full Text PDF

Background: Oncolytic viruses (OVs) are promising immunotherapeutics to treat immunologically cold tumors. However, research on the mechanism of action of OVs in humans and clinically relevant biomarkers is still sparse. To induce strong T-cell responses against solid tumors, TILT-123 (Ad5/3-E2F-d24-hTNFa-IRES-hIL2, igrelimogene litadenorepvec) was developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!