Towards regenerative therapy for cardiac disease.

Lancet

Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA. Electronic address:

Published: March 2012

Development of regenerative therapeutic strategies to reverse the progression of advanced heart failure is one of the most urgent clinical needs of this century. Insights gained from clinical trials of adult stem cells, together with fundamental scientific advances in cardiac stem cell and regenerative biology, are beginning to yield potential new targets and strategies for regenerative therapies. Of particular importance are new scientific discoveries related to intrinsic cardiac regeneration, renewal factors that can trigger regeneration, and tissue-engineering technology, which are beginning to change the way investigators view the scientific and clinical position of cardiovascular regenerative therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0140-6736(12)60075-0DOI Listing

Publication Analysis

Top Keywords

regenerative therapy
8
regenerative
5
therapy cardiac
4
cardiac disease
4
disease development
4
development regenerative
4
regenerative therapeutic
4
therapeutic strategies
4
strategies reverse
4
reverse progression
4

Similar Publications

Therapeutic efficacy and safety of adeno-associated virus (AAV) liver gene therapy depend on capsid choice. To predict AAV capsid performance under near-clinical conditions, we established side-by-side comparison at single-cell resolution in human livers maintained by normothermic machine perfusion. AAV-LK03 transduced hepatocytes much more efficiently and specifically than AAV5, AAV8 and AAV6, which are most commonly used clinically, and AAV-NP59, which is better at transducing human hepatocytes engrafted in immune-deficient mice.

View Article and Find Full Text PDF

Prominosomes - a particular class of extracellular vesicles containing prominin-1/CD133?

J Nanobiotechnology

January 2025

Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.

Extracellular membrane vesicles (EVs) offer promising values in various medical fields, e.g., as biomarkers in liquid biopsies or as native (or bioengineered) biological nanocarriers in tissue engineering, regenerative medicine and cancer therapy.

View Article and Find Full Text PDF

Myocardial infarction is a condition where the heart muscle is damaged due to clogged coronary arteries. There are limited treatment options for treating myocardial infarction. Microneedle patches have recently become popular as a possibly viable therapy for myocardial.

View Article and Find Full Text PDF

This study examines the biocompatibility, osteogenic potential, and effectiveness of polyether ether ketone (PEEK) composites for treating osteonecrosis, seeking to establish a theoretical basis for clinical application. A range of PEEK composite materials, including sulfonated polyether ether ketone (SPEEK), polydopamine-sulfonated polyether ether ketone (SPEEK-PDA), bone-forming peptide-poly-dopamine-sulfonated polyether ether ketone (SPEEK-PDA-BFP), and vascular endothelial growth factor-poly-dopamine-sulfonated polyether ether ketone (SPEEK-PDA-VEGF), were constructed by concentrated sulfuric acid sulfonation, polydopamine modification and grafting of bioactive factors. The experiments involved adult male New Zealand rabbits aged 24-28 weeks and weighing 2.

View Article and Find Full Text PDF

Fetal fibroblast heterogeneity defines dermal architecture during human embryonic skin development.

J Invest Dermatol

January 2025

Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, Great Maze Pond, London, UK; Directors' Unit, EMBL, Meyerhofstr. 1, 69117 Heidelberg, Germany. Electronic address: https://twitter.com/fionamarywatt.

To investigate heterogeneity of fibroblasts in human fetal skin, we analysed published single-cell RNA sequencing data (8 and 16 post conception weeks (PCW)) and performed single-molecule fluorescence in situ hybridisation to map their spatial distribution and predicted dynamic interactions. Clustering revealed 8 fibroblast populations with developmental stage-specific abundance changes. Proliferative cells (MKI67+) were present at all stages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!