Inheritance of silent rDNA chromatin is mediated by PARP1 via noncoding RNA.

Mol Cell

Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.

Published: March 2012

Faithful propagation of specific chromatin states requires re-establishment of epigenetic marks after every cell division. How the original epigenetic signature is inherited after disruption during DNA replication is still poorly understood. Here, we show that the poly(ADP-ribose)-polymerase-1 (PARP1/ARTD1) is implicated in the maintenance of silent rDNA chromatin during cell division. We demonstrate that PARP1 associates with TIP5, a subunit of the NoRC complex, via the noncoding pRNA and binds to silent rRNA genes after their replication in mid-late S phase. PARP1 represses rRNA transcription and is implicated in the formation of silent rDNA chromatin. Silent rDNA chromatin is a specific substrate for ADP-ribosylation and the enzymatic activity of PARP1 is necessary to establish rDNA silencing. The data unravel a function of PARP1 and ADP-ribosylation that serves to allow for the inheritance of silent chromatin structures, shedding light on how epigenetic marks are transmitted during each cell cycle.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molcel.2012.01.024DOI Listing

Publication Analysis

Top Keywords

silent rdna
16
rdna chromatin
16
inheritance silent
8
epigenetic marks
8
cell division
8
chromatin
6
rdna
5
parp1
5
silent
5
chromatin mediated
4

Similar Publications

The association between late replication timing and low transcription rates in eukaryotic heterochromatin is well known, yet the specific mechanisms underlying this link remain uncertain. In , the histone deacetylase Sir2 is required for both transcriptional silencing and late replication at the repetitive ribosomal DNA (rDNA) arrays. We have previously reported that in the absence of , a de-repressed RNA PolII repositions MCM replicative helicases from their loading site at the ribosomal origin, where they abut well-positioned, high-occupancy nucleosomes, to an adjacent region with lower nucleosome occupancy.

View Article and Find Full Text PDF

The ribosomal genes (rDNA genes) encode 47S rRNA which accounts for up to 80% of all cellular RNA. At any given time, no more than 50% of rDNA genes are actively transcribed, and the other half is silent by forming heterochromatin structures through DNA methylation. In cancer cells, upregulation of ribosome biogenesis has been recognized as a hallmark feature, thus, the reduced methylation of rDNA promoter has been thought to support conformational changes of chromatin accessibility and the subsequent increase in rDNA transcription.

View Article and Find Full Text PDF

Ribosomal RNA (rRNA) genes exist in multiple copies arranged in tandem arrays known as ribosomal DNA (rDNA). The total number of gene copies is variable, and the mechanisms buffering this copy number variation remain unresolved. We surveyed the number, distribution, and activity of rDNA arrays at the level of individual chromosomes across multiple human and primate genomes.

View Article and Find Full Text PDF

Despite the widely accepted involvement of DNA methylation in the regulation of rDNA transcription, the relative participation of different cytosine methylation pathways is currently described only for a few model plants. Using PacBio, Bisulfite, and RNA sequencing; PCR; Southern hybridizations; and FISH, the epigenetic consequences of rDNA copy number variation were estimated in two lineages, por1 and por2, the latter with more than twice the rDNA copy numbers distributed approximately equally between NORs on chromosomes A and D. The lower rDNA content in por1 correlated with significantly reduced (>90%) sizes of both D-NORs.

View Article and Find Full Text PDF

Fascioliasis is a snail-borne zoonotic disease with impact on the development of human subjects and communities. It is caused by two liver-infecting fasciolid trematode species, the globally-distributed and the Africa/Asia-restricted but more pathogenic, larger . is the cause of endemicity in livestock throughout the warm lowlands from Pakistan to southeastern Asia since old times.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!