Over the past decade, extensive poisoning campaigns have been conducted in southern Saskatchewan to control Richardson's ground squirrel Spermophilus richardsonii (Sabine, 1822) populations. Such campaigns might impact on predator abundance by decreasing prey levels, and also through secondary poisoning. Using spotlighting, we investigated the relative abundance of American badgers Taxidea taxus (Schreber, 1777) and red fox Vulpes vulpes (Linnaeus, 1758) in 2 study areas with road access and crops, but with different levels of poisoning. In the study area with relatively low poisoning (19.6% of the area traversed by roads), there were 2.2 times more American badgers per km of road and 6.4 times more red foxes per km than in the study area with high poisoning (89.7% of the area). It is recommended that an Integrated Pest Management program be developed to conserve natural predators across landscapes.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1749-4877.2011.00276.xDOI Listing

Publication Analysis

Top Keywords

relative abundance
8
abundance american
8
taxidea taxus
8
red fox
8
fox vulpes
8
vulpes vulpes
8
american badgers
8
study area
8
poisoning
6
american badger
4

Similar Publications

Severe acute pancreatitis (SAP) is one of the leading causes of hospital admissions for gastrointestinal diseases, with a rising incidence worldwide. Intestinal microbiota dysbiosis caused by SAP exacerbates systemic inflammatory response syndrome and organ dysfunction. Fecal microbiota transplantation (FMT) has emerged as a promising therapeutic option for gastrointestinal diseases.

View Article and Find Full Text PDF

Verification of an alteration in the gut microbiota that increases nutritional risk in patients on hemodialysis.

Biosci Microbiota Food Health

July 2024

Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.

In end-stage kidney disease requiring hemodialysis, patients at nutritional risk have a poor prognosis. The gut microbiota is important for maintaining the nutritional status of patients. However, it remains unclear whether an altered gut microbiota correlates with increased nutritional risk in patients undergoing hemodialysis.

View Article and Find Full Text PDF

Gut microbiota involvement in the effect of water-soluble dietary fiber on fatty liver and fibrosis.

Biosci Microbiota Food Health

August 2024

Department of Gastroenterology, Hematology and Clinical immunology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki-shi, Aomori 036-8562, Japan.

The beneficial effects of water-soluble dietary fiber on liver fat and fibrosis involve the gut microbiota; however, few epidemiological studies have investigated this association. This large-scale epidemiological study aimed to determine the effect of water-soluble dietary fiber intake on liver fat and fibrosis via gut microbiota for the general population. We divided low- and high-intake groups by median daily water-soluble dietary fiber intake and matched background factors by propensity score matching for sex and age.

View Article and Find Full Text PDF

Effects of moderate beer consumption on immunity and the gut microbiome in immunosuppressed mice.

Biosci Microbiota Food Health

August 2024

Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, PR China.

Beer contains a variety of bioactive ingredients and trace elements that can regulate bodily functions, and moderate consumption of beer can enhance immune responses. This study aimed to investigate the potential benefits of moderate consumption of alcoholic or non-alcoholic beer on the gut microbiome, immunity, and intestinal barrier function in immunosuppressed BALB/c mice induced by cyclophosphamide (CTX). Model mice with CTX-induced immunosuppression were administered alcoholic or non-alcoholic beer or galacto-oligosaccharides (GOS) for 28 consecutive days.

View Article and Find Full Text PDF

The prevalence of childhood obesity is rising globally, with some obese children progressing to develop metabolic syndrome (MS). However, the specific differences between these groups remain unclear. To investigate the differences in gut microbiota, we conducted physiological and biochemical assessments, alongside 16S rRNA sequencing, in a cohort of 32 children from Southeastern China, which included 4 normal-weight children, 5 with mild obesity, 9 with moderate obesity, 9 with severe obesity, and 5 with metabolic syndrome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!