The feasibility of ex vivo blood production is limited by both biological and engineering challenges. From an engineering perspective, these challenges include the significant volumes required to generate even a single unit of a blood product, as well as the correspondingly high protein consumption required for such large volume cultures. Membrane bioreactors, such as hollow fiber bioreactors (HFBRs), enable cell densities approximately 100-fold greater than traditional culture systems and therefore may enable a significant reduction in culture working volumes. As cultured cells, and larger molecules, are retained within a fraction of the system volume, via a semipermeable membrane it may be possible to reduce protein consumption by limiting supplementation to only this fraction. Typically, HFBRs are complex perfusion systems having total volumes incompatible with bench scale screening and optimization of stem cell-based cultures. In this article we describe the use of a simplified HFBR system to assess the feasibility of this technology to produce blood products from umbilical cord blood-derived CD34(+) hematopoietic stem progenitor cells (HSPCs). Unlike conventional HFBR systems used for protein manufacture, where cells are cultured in the extracapillary space, we have cultured cells in the intracapillary space, which is likely more compatible with the large-scale production of blood cell suspension cultures. Using this platform we direct HSPCs down the myeloid lineage, while targeting a 100-fold increase in cell density and the use of protein-free bulk medium. Our results demonstrate the potential of this system to deliver high cell densities, even in the absence of protein supplementation of the bulk medium.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3727/096368911X627363 | DOI Listing |
Anal Chem
January 2025
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
To facilitate on-site detection by nonspecialists, there is a demand for the development of portable "sample-to-answer" devices capable of executing all procedures in an automated or easy-to-operate manner. Here, we developed an automated detection device that integrated a magnetofluidic manipulation system and a signal acquisition system. Both systems were controllable via a smartphone.
View Article and Find Full Text PDFLeukemia
January 2025
Department of Hematology, Mayo Clinic Rochester, Rochester, MN, USA.
In the MAIA study (median follow-up, 56.2 months), daratumumab plus lenalidomide and dexamethasone (D-Rd) significantly improved progression-free survival (PFS) and overall survival versus lenalidomide and dexamethasone (Rd) alone in transplant-ineligible newly diagnosed multiple myeloma (NDMM). In this post hoc analysis of clinically important subgroups in MAIA (median follow-up, 64.
View Article and Find Full Text PDFSci China Life Sci
January 2025
State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
Hematopoiesis is a finely tuned process that generates all blood cell types through self-renewal and differentiation, which is crucial for maintaining homeostasis. Acute infections can prompt a hematopoietic response known as emergency myelopoiesis. In this study, using a Candida albicans (C.
View Article and Find Full Text PDFSci Rep
January 2025
Biomedical Research Center, Qatar University, P.O Box 2713, Doha, Qatar.
Regular aerobic exercise has a significant impact on glucose metabolism and lipid profiles, contributing to overall health improvement. However, evidence for optimal exercise duration to achieve these effects is limited. This study aims to explore the effects of 4 and 8 weeks of moderate-intensity aerobic exercise on glucose metabolism, lipid profiles, and associated metabolic changes in young female students with insulin resistance and varying body mass, seeking to determine the optimal duration for physiological adaptations.
View Article and Find Full Text PDFNat Med
January 2025
Department of Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Bambino Gesù Children's Hospital, Rome, Italy.
Allogeneic chimeric antigen receptor (CAR) T cells targeting disialoganglioside-GD2 (ALLO_GD2-CART01) could be a therapeutic option for patients with relapsed or refractory, high-risk neuroblastoma (r/r HR-NB) whose tumors did not respond to autologous GD2-CART01 or who have profound lymphopenia. We present a case series of five children with HR-NB refractory to more than three different lines of therapy who received ALLO_GD2-CART01 in a hospital exemption setting. Four of them had previously received allogeneic hematopoietic stem cell transplantation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!