Nanocrystalline cellulose (NCC), a rod-shaped nanoscale material with exceptional strength and physicochemical properties, can be prepared from inexpensive renewable biomass. Besides its potential use as a reinforcing agent for industrial biocomposites, pristine NCC exhibits low toxicity and poses no serious environmental concerns, providing impetus for its use in bioapplications. Here, we review recent developments in the use of modified NCC for emerging bioapplications, specifically enzyme immobilization, antimicrobial and medical materials, green catalysis, biosensing and controlled drug delivery. We focus on the modification of NCC with chemical functionalities and inorganic nanoparticles, reviewing practical considerations such as reusability, toxicity and scale-up capability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tibtech.2012.02.001 | DOI Listing |
Polymers (Basel)
December 2024
Department of Biomedical Engineering, Pamukkale University, Denizli 20160, Türkiye.
Bio-nanomaterials are gaining increasing attention due to their renewable and eco-friendly characteristics. Among these, nanocrystalline cellulose (NCC) stands out as one of the most advanced materials for applications in food, healthcare, composite production, and beyond. In this study, NCC was successfully extracted from cotton-based textile waste using a combination of chemical and mechanical methods.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Faculty of Materials Engineering and Physics, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland.
Thermoplastic composites have garnered significant attention in various industries due to their exceptional properties, such as recyclability and ease of molding. In particular, biocomposites, which combine biopolymers with natural fibers, represent a promising alternative to petroleum-based materials, offering biodegradability and reduced environmental impact. However, there is limited knowledge regarding the efficacy of joining PLA/PHBV-based biocomposites modified with nanocrystalline cellulose (NCC) using vibration welding, which restricts their potential applications.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Łukasiewicz-Upper Silesian Institute of Technology, The Welding Centre, Bł. Czesława, 44-100 Gliwice, Poland.
This study investigates the physical and mechanical properties of biodegradable composites based on PLA/PHBV blends modified with different content of nanocrystalline cellulose (NCC) of 5, 10, and 15 wt.%. Density measurements reveal that the density of the composite increases with increasing NCC content.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege str. 29-33, H-1121 Budapest, Hungary.
We present a novel method for preparing bioactive and biomineralized calcium phosphate (mCP)-loaded biopolymer composite scaffolds with a porous structure. Two types of polymers were investigated as matrices: one natural, cellulose acetate (CA), and one synthetic, polycaprolactone (PCL). Biomineralized calcium phosphate particles were synthesized via wet chemical precipitation, followed by the addition of organic biominerals, such as magnesium gluconate and zinc gluconate, to enhance the bioactivity of the pure CP phase.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Environmental Research Department, Theodor Bilharz Research Institute, Imbaba, Giza 12411, Egypt.
Continuous efforts are made to explore alternative methods for reducing Schistosomiasis. So, this study evaluated the effectiveness of Chlorella vulgaris and Pediastrum boryanum extracts carried on their nanocrystalline cellulose (NCC) as immunostimulants for Biomphalaria alexandrina snails against Schistosoma mansoni infection. The results showed that the lowest cercarial shedding/snail was 340 and 330 with 400 mg/L of C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!