Proper assembly of kinetochores (KTs) during mitosis is required for bipolar attachment of spindle microtubules (MTs) and the accumulation of spindle assembly checkpoint (SAC) components. Here we show that testis-expressed protein 14 (Tex14), which has been implicated in midbody function, is recruited to KTs by Plk1 in a Cdk1-dependent manner during early mitosis. Exclusion of Tex14 from kinetochores results in an inability to efficiently localize outer KT components, impaired KT-MT attachment, chromosome congression defects, and whole-chromosome instability. In addition, we demonstrate that phosphorylation of Tex14 by Plk1 during metaphase promotes APC(Cdc20)-mediated Tex14 degradation. Inhibition of this phosphorylation event causes retention of Tex14 at KTs and results in delayed metaphase-to-anaphase transition and chromosome segregation defects. Our findings identify Tex14 as an important mediator of KT structure and function and the fidelity of chromosome separation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3302152 | PMC |
http://dx.doi.org/10.1016/j.molcel.2012.01.013 | DOI Listing |
Theriogenology
January 2025
Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China. Electronic address:
Int J Mol Sci
December 2024
Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil.
In the flower development study, we identified SCI1 (Stigma/style Cell-cycle Inhibitor 1), a regulator of cell proliferation. SCI1 interacts with NtCDKG;2 ( Cyclin-Dependent Kinase G;2), a homolog of human CDK11, which is responsible for RanGTP-dependent microtubule stabilization, regulating spindle assembly rate. In a Y2H screening of a cDNA library using NtCDKG;2 as bait, a RanBP1 (Ran-Binding Protein 1) was revealed as its interaction partner.
View Article and Find Full Text PDFNat Cell Biol
January 2025
Department of Biochemistry, University of Oxford, Oxford, UK.
Delays in mitosis trigger p53-dependent arrest in G1 of the next cell cycle, thus preventing repeated cycles of chromosome instability and aneuploidy. Here we show that MDM2, the p53 ubiquitin ligase, is a key component of the timer mechanism triggering G1 arrest in response to prolonged mitosis. This timer function arises due to the attenuation of protein synthesis in mitosis.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Life Science and Medical Bioscience, Laboratory of Cytoskeletal Logistics, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan.
In mammalian epithelial cells, cytoplasmic microtubules are mainly non-centrosomal, through the functions of the minus-end binding proteins CAMSAP2 and CAMSAP3. When cells enter mitosis, cytoplasmic microtubules are reorganized into the spindle composed of both centrosomal and non-centrosomal microtubules. The function of the CAMSAP proteins upon spindle assembly remains unknown, as these do not exhibit evident localization to spindle microtubules.
View Article and Find Full Text PDFProteins
January 2025
Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, India.
MPS1 kinase is a dual specificity kinase that plays an important role in the spindle assembly checkpoint mechanism during cell division. Overexpression of MPS1 kinase is reported in several cancers. However, drug discovery and development efforts targeting MPS1 kinase did not result in any clinically successful candidates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!