Glioblastoma multiforme presenting during pregnancy presents unique challenges to the clinician. In planning treatment, potential benefits to the mother must be balanced against the risks to the fetus. In addition, evidence relating to timing of surgery and the use of radiotherapy and chemotherapy in pregnancy is limited. Management of peritumoral edema and seizures in pregnancy is also complicated by the potential for drug-related teratogenic effects and adverse neonatal outcomes on the fetus. The general anesthetic used for surgery must factor obstetric and neurosurgical considerations. In this review article, the authors seek to examine the role, safety, and timing of therapies for glioblastoma in the context of pregnancy. This covers the use of radiotherapy and chemotherapy, timing of surgery, postoperative care, anesthetic considerations, and use of anticonvulsant medications and steroids. The authors hope that this will provide a framework for clinicians treating pregnant patients with glioblastomas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3171/2012.2.JNS112077 | DOI Listing |
J Transl Med
January 2025
Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, No. 569 Xinsi Road, Xi'an, China.
Autophagy is responsible for maintaining cellular balance and ensuring survival. Autophagy plays a crucial role in the development of diseases, particularly human cancers, with actions that can either promote survival or induce cell death. However, brain tumors contribute to high levels of both mortality and morbidity globally, with resistance to treatments being acquired due to genetic mutations and dysregulation of molecular mechanisms, among other factors.
View Article and Find Full Text PDFCell Death Dis
January 2025
Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA.
The association of necrosis in tumors with poor prognosis implies a potential tumor-promoting role. However, the mechanisms underlying cell death in this context and how damaged tissue contributes to tumor progression remain unclear. Here, we identified p38 mitogen-activated protein kinases (p38 MAPK, a.
View Article and Find Full Text PDFCell Death Discov
January 2025
Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh 201303, India.
MicroRNAs are regulators of gene expression and their dysregulation can lead to various diseases. MicroRNA-135 (MiR-135) exhibits brain-specific expression, and performs various functions such as neuronal morphology, neural induction, and synaptic function in the human brain. Dysfunction of miR-135 has been reported in brain tumors, and neurodegenerative and neurodevelopmental disorders.
View Article and Find Full Text PDFActa Biomater
January 2025
Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, United States of America; Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, United States of America. Electronic address:
Pro-tumoral M2 tumor-associated macrophages (TAMs) play a critical role in the tumor immune microenvironment (TIME), making them an important therapeutic target for cancer treatment. Approaches for imaging and monitoring M2 TAMs, as well as tracking their changes in response to tumor progression or treatment are highly sought-after but remain underdeveloped. Here, we report an M2-targeted magnetic resonance imaging (MRI) probe based on sub-5 nm ultrafine iron oxide nanoparticles (uIONP), featuring an anti-biofouling coating to prevent non-specific macrophage uptake and an M2-specific peptide ligand (M2pep) for active targeting of M2 TAMs.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of Medical Imaging, Shenzhen Longhua District Key Laboratory of Neuroimaging, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China.
Background: Glioblastoma multiforme (GBM) is a highly aggressive brain cancer with poor prognosis and limited treatment options. Despite advances in understanding its molecular mechanisms, effective therapeutic strategies remain elusive due to the tumor's genetic complexity and heterogeneity.
Methods: This study employed a comprehensive analysis approach integrating 113 machine learning algorithms with Mendelian Randomization (MR) analysis to investigate the molecular underpinnings of GBM.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!