Long-term warming alters the composition of Arctic soil microbial communities.

FEMS Microbiol Ecol

Department of Forest Science, Faculty of Forest Science, University of British Columbia, Vancouver, BC, Canada.

Published: November 2012

Despite the importance of Arctic soils in the global carbon cycle, we know very little of the impacts of warming on the soil microbial communities that drive carbon and nutrient cycling in these ecosystems. Over a 2-year period, we monitored the structure of soil fungal and bacterial communities in organic and mineral soil horizons in plots warmed by greenhouses for 18 years and in control plots. We found that microbial communities were stable over time but strongly structured by warming. Warming led to significant reductions in the evenness of bacterial communities, while the evenness of fungal communities increased significantly. These patterns were strongest in the organic horizon, where temperature change was greatest and were associated with a significant increase in the dominance of the Actinobacteria and significant reductions in the Gemmatimonadaceae and the Proteobacteria. Greater evenness of the fungal community with warming was associated with significant increases in the ectomycorrhizal fungi, Russula spp., Cortinarius spp., and members of the Helotiales suggesting that increased growth of the shrub Betula nana was an important mechanism driving this change. The shifts in soil microbial community structure appear sufficient to account for warming-induced changes in nutrient cycling in Arctic tundra as climate warms.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1574-6941.2012.01350.xDOI Listing

Publication Analysis

Top Keywords

soil microbial
12
microbial communities
12
nutrient cycling
8
bacterial communities
8
evenness fungal
8
communities
6
soil
5
long-term warming
4
warming alters
4
alters composition
4

Similar Publications

Soil oil pollution is a major environmental issue, especially in oil-producing nations, as it threatens the health of plants, animals, and humans. While bioremediation has been extensively utilized as a cost-effective method for restoring oil-contaminated soil, its environmental impact has garnered relatively little attention. Researchers often concentrate on reducing pollutant concentrations below permissible limits to restore soil quality.

View Article and Find Full Text PDF

Plant growth-promoting bacteria (PGPB) are considered an effective eco-friendly biostimulator. However, relatively few studies have examined how PGPB affect the native bacterial community of major crops. Thus, this study investigates the impact of a PGPB consortium, comprising Pseudomonas sp.

View Article and Find Full Text PDF

Azo dyes constitute 60-70% of commercially used dyes and are complex, carcinogenic, and mutagenic pollutants that negatively impact soil composition, water bodies, flora, and fauna. Conventional azo dye degradation techniques have drawbacks such as high production and maintenance costs, use of hazardous chemicals, membrane clogging, and sludge generation. Constructed Wetland-Microbial Fuel Cells (CW-MFCs) offer a promising sustainable approach for the bio-electrodegradation of azo dyes from textile wastewater.

View Article and Find Full Text PDF

Boron-dependent autoinducer-2-mediated quorum sensing stimulates the Cr(VI) reduction of Leucobacter chromiireducens CD49.

J Environ Manage

January 2025

Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China. Electronic address:

Traditionally, abiotic factors such as pH, temperature, and initial Cr(VI) concentration have been undoubtedly recognized as the external driving forces that dramatically affect the microbial-mediated remediation of Cr(VI) pollutants. However, concentrating on whether and how the biological behaviors and metabolic activities drive the microbial-mediated Cr(VI) detoxification is a study-worthy but little-known issue. In this study, Leucobacter chromiireducens CD49 isolated from heavy-metal-contaminated soil was identified to tolerate 8000.

View Article and Find Full Text PDF

Bacterial and fungal diversity and species interactions inversely affect ecosystem functions under drought in a semi-arid grassland.

Microbiol Res

January 2025

Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, China. Electronic address:

Extreme climatic events, such as drought, can significantly alter belowground microbial diversity and species interactions, leading to unknown consequences for ecosystem functioning. Here, we simulated a drought gradient by removing 30 %, 50 %, and 70 % of precipitation in a semi-arid grassland over five years. We assessed the effects of drought on bacterial and fungal diversity, as well as on their species interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!