Reducing false-positive prediction of minimotifs with a genetic interaction filter.

PLoS One

Department of Computer Science and Engineering, University of Connecticut, Storrs, Connecticut, United States of America.

Published: July 2012

Background: Minimotifs are short contiguous peptide sequences in proteins that have known functions. At its simplest level, the minimotif sequence is present in a source protein and has an activity relationship with a target, most of which are proteins. While many scientists routinely investigate new minimotif functions in proteins, the major web-based discovery tools have a high rate of false-positive prediction. Any new approach that reduces false-positives will be of great help to biologists.

Methods And Findings: We have built three filters that use genetic interactions to reduce false-positive minimotif predictions. The basic filter identifies those minimotifs where the source/target protein pairs have a known genetic interaction. The HomoloGene genetic interaction filter extends these predictions to predicted genetic interactions of orthologous proteins and the node-based filter identifies those minimotifs where proteins that have a genetic interaction with the source or target have a genetic interaction. Each filter was evaluated with a test data set containing thousands of true and false-positives. Based on sensitivity and selectivity performance metrics, the basic filter had the best discrimination for true positives, whereas the node-based filter had the highest sensitivity. We have implemented these genetic interaction filters on the Minimotif Miner 2.3 website. The genetic interaction filter is particularly useful for improving predictions of posttranslational modifications such as phosphorylation and proteolytic cleavage sites.

Conclusions: Genetic interaction data sets can be used to reduce false-positive minimotif predictions. Minimotif prediction in known genetic interactions can help to refine the mechanisms behind the functional connection between genes revealed by genetic experimentation and screens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3293834PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0032630PLOS

Publication Analysis

Top Keywords

genetic interaction
32
interaction filter
16
genetic
12
genetic interactions
12
false-positive prediction
8
interaction
8
filter
8
reduce false-positive
8
false-positive minimotif
8
minimotif predictions
8

Similar Publications

Hypothesis for Molecular Evolution in the Pre-Cellular Stage of the Origin of Life.

Wiley Interdiscip Rev RNA

January 2025

Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, People's Republic of China.

Life was originated from inorganic world and had experienced a long period of evolution in about 3.8 billion years. The time for emergence of the pioneer creations on Earth is debatable nowadays, and how the scenario for the prebiotic molecular interactions is still mysterious.

View Article and Find Full Text PDF

Esophageal squamous cell carcinoma (ESCC) has high mortality. The role and regulatory mechanism of hsa_circ_0021727 (circ_0021727) in ESCC remain largely unknown. This study focused on the undiscovered impact of circ_0021727 on cell cycle progression, apoptosis, and angiogenesis of ESCC.

View Article and Find Full Text PDF

Background: Centromere protein N (CENPN), located on chromosome 16q23.2, encodes vital nucleosome-associated complexes that are essential for dynamic assembly processes. CENPN plays a pivotal role in regulating cell proliferation and cell cycle progression by influencing mitotic events.

View Article and Find Full Text PDF

The Orange Carotenoid Protein (OCP) is a unique water-soluble photoactive protein that plays a critical role in regulating the balance between light harvesting and photoprotective responses in cyanobacteria. The challenge in understanding OCP´s photoactivation mechanism stems from the heterogeneity of the initial configurations of its embedded ketocarotenoid, which in the dark-adapted state can form up to two hydrogen bonds to critical amino acids in the protein's C-terminal domain, and the extremely low quantum yield of primary photoproduct formation. While a series of experiments involving point mutations within these contacts helped us to identify these challenges, they did not resolve them.

View Article and Find Full Text PDF

Secretogranin III: a promising therapeutic target for intraocular neovascular lesions.

Int Ophthalmol

January 2025

Department of Ophthalmology, The Second Hospital of Jilin University, #218 Ziqiang Street, Changchun, 130041, Jilin, China.

Purpose: The purpose of this study is to investigate the role of Secretogranin III (Scg3) in the pathogenesis of intraocular neovascular diseases and assess its potential as a therapeutic target for novel treatment strategies.

Methods: A literature review was conducted to examine the expression of Scg3 in intraocular neovascular diseases. We reviewed studies on the interaction of Scg3 with its homologous receptors and its effect on endothelial cell proliferation, migration, and vascular permeability-key processes involved in angiogenesis and neovascularization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!