Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Chronic systemic hypertension causes cardiac pressure overload leading to increased myocardial O(2) consumption. Hypoxia-inducible factor 1 (HIF-1) is a master regulator of O(2) homeostasis. Mouse embryos lacking expression of the O(2)-regulated HIF-1α subunit die at midgestation with severe cardiac malformations and vascular regression. Here we report that Hif1a(f/f);Tie2-Cre conditional knockout mice, which lack HIF-1α expression only in Tie2(+) lineage cells, develop normally, but when subjected to pressure overload induced by transaortic constriction (TAC), they manifest rapid cardiac decompensation, which is accompanied by excess cardiac fibrosis and myocardial hypertrophy, decreased myocardial capillary density, increased myocardial hypoxia and apoptosis, and increased TGF-β signaling through both canonical and noncanonical pathways that activate SMAD2/3 and ERK1/2, respectively, within endothelial cells of cardiac blood vessels. TAC also induces dilatation of the proximal aorta through enhanced TGF-β signaling in Hif1a(f/f);Tie2-Cre mice. Inhibition of TGF-β signaling by treatment with neutralizing antibody or pharmacologic inhibition of MEK-ERK signaling prevented TAC-induced contractile dysfunction and pathological remodeling. Thus, HIF-1 plays a critical protective role in the adaptation of the heart and aorta to pressure overload by negatively regulating TGF-β signaling in endothelial cells. Treatment of wild-type mice with digoxin, which inhibits HIF-1α synthesis, resulted in rapid cardiac failure after TAC. Although digoxin has been used for decades as an inotropic agent to treat heart failure, it does not improve survival, suggesting that the countertherapeutic effects of digoxin observed in the TAC mouse model may have clinical relevance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3325701 | PMC |
http://dx.doi.org/10.1073/pnas.1202081109 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!