Growth patterns vary in space and time as an organ develops, leading to shape and size changes. Quantifying spatiotemporal variations in organ growth throughout development is therefore crucial to understand how organ shape is controlled. We present a novel method and computational tools to quantify spatial patterns of growth from three-dimensional data at the adaxial surface of leaves. Growth patterns are first calculated by semiautomatically tracking microscopic fluorescent particles applied to the leaf surface. Results from multiple leaf samples are then combined to generate mean maps of various growth descriptors, including relative growth, directionality, and anisotropy. The method was applied to the first rosette leaf of Arabidopsis (Arabidopsis thaliana) and revealed clear spatiotemporal patterns, which can be interpreted in terms of gradients in concentrations of growth-regulating substances. As surface growth is tracked in three dimensions, the method is applicable to young leaves as they first emerge and to nonflat leaves. The semiautomated software tools developed allow for a high throughput of data, and the algorithms for generating mean maps of growth open the way for standardized comparative analyses of growth patterns.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3366717PMC
http://dx.doi.org/10.1104/pp.112.194662DOI Listing

Publication Analysis

Top Keywords

growth patterns
16
growth
10
leaf surface
8
three dimensions
8
maps growth
8
patterns
6
computational method
4
method quantifying
4
quantifying growth
4
patterns adaxial
4

Similar Publications

Background: Understanding the interference patterns of respiratory viruses could be important for shedding light on potential strategies to combat these human infectious agents.

Objective: To investigate the possible interactions between adenovirus type 2 (AdV2), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A/H1N1 pandemic (H1N1pdm09) using the A549 cell line.

Methods: Single infections, co-infections, and superinfections (at 3 and 24 h after the first virus infection) were performed by varying the multiplicity of infection (MOI).

View Article and Find Full Text PDF

Skin wound healing is a physiological process orchestrated by epithelial and mesenchymal cells able to restore tissue continuity by re-organizing themselves and the ECM. This research study aimed to develop an optimized in vitro experimental model of full-thickness skin, to address molecular and morphological modifications occurring in the re-epithelization and wound healing process. Wound healing starting events were investigated within an experimental window of 8 days at the molecular level by gene expression and immunofluorescence of key epidermal and dermal biomarkers.

View Article and Find Full Text PDF

Rubber is widely used in situations involving cyclic loads, and the influence of temperature on rubber properties is particularly pronounced under cyclic loading. In this study, mechanical property tests and crack propagation tests of carbon black-filled hydrogenated nitrile butadiene rubber were conducted at four different operating temperatures. Based on the results of the crack propagation tests, the temperature-dependent characteristics of the Paris-Erdogan parameters and strain energy density were clarified.

View Article and Find Full Text PDF

Nano metakaolin (NMK) has attracted considerable interest for its potential to improve the durability of cementitious materials. However, the effect of NMK on the splitting tensile performance of concrete has not been systematically investigated. This study investigates the splitting tensile performance of NMK concrete and analyzes its failure behavior under splitting load.

View Article and Find Full Text PDF

The gene family plays a crucial role in plant growth, development, and responses to biotic and abiotic stresses. , a warm-season turfgrass with exceptional salt tolerance, can be irrigated with seawater. However, the gene family in seashore paspalum remains poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!