Mounting evidence has demonstrated that NOD-Shi/scid/γc(null) (NOG) mice are one of the most suitable mouse strains for humanized mouse technologies, in which various human cells or tissues can be engrafted without rejection and autonomously maintained. We have characterized and analyzed various features of the human immune system reconstituted in NOG mice by transplanting human hematopoietic stem cells (hu-HSC). One of the problems of the quasi-immune system in these hu-HSC NOG mice is that the quality of immune responses is not always sufficient, as demonstrated by the lack of IgG production in response to antigen challenge. In this study, we established a novel transgenic NOG sub-strain of mice bearing the HLA-DRA and HLA-DRB1:0405 genes, which specifically expresses HLA-DR4 molecules in MHC II-positive cells. This mouse strain enabled us to match the haplotype of HLA-DR between the recipient mice and human donor HSC. We demonstrated that T-cell homeostasis was differentially regulated in HLA-matched hu-HSC NOG mice compared with HLA-mismatched control mice, and antibody class switching was induced after immunization with exogenous antigens in HLA-matched mice. This novel mouse strain improves the reconstituted human immune systems that develop in humanized mice and will contribute to future studies of human humoral immune responses.

Download full-text PDF

Source
http://dx.doi.org/10.1093/intimm/dxs045DOI Listing

Publication Analysis

Top Keywords

nog mice
16
immune responses
12
mice
9
human humoral
8
humoral immune
8
human immune
8
hu-hsc nog
8
mouse strain
8
human
6
immune
5

Similar Publications

Objectives: To evaluate the manufacturability, efficacy and safety of allogeneic CD19 chimeric antigen receptor double-negative T cells (CD19-CAR-DNTs) as an off-the-shelf therapeutic cell product.

Methods: A membrane proteome array was used to assess the off-target binding of CD19-CAR. DNTs derived from healthy donors were transduced with lentiviral vectors encoding the CD19-CAR.

View Article and Find Full Text PDF

Membrane palmitoylated protein MPP1 inhibits immune escape by regulating the USP12/ CCL5 axis in urothelial carcinoma.

Int Immunopharmacol

December 2024

Department of Urology, Taicang Affiliated Hospital of Soochow University, the First People's Hospital of Taicang, Taicang 215400, China. Electronic address:

Background: The response rate to immunotherapy in patients with urothelial carcinoma remains limited. Studies have shown that membrane palmitoylated proteins (MPPs) play key roles in tumor progression. However, the mechanisms by which MPP1 regulates immune escape in urothelial carcinoma are not well understood.

View Article and Find Full Text PDF

Background: As one of the most promising adoptive cell therapies, CAR-T cell therapy has achieved notable clinical effects in patients with hematological tumors. However, several treatment-related obstacles remain in CAR-T therapy, such as cytokine release syndrome, neurotoxicity, and high-frequency recurrence, which severely limit the long-term effects and can potentially be fatal. Therefore, strategies to increase the controllability and safety of CAR-T therapy are urgently needed.

View Article and Find Full Text PDF

Background & Aims: Responses to immunotherapies in hepatocellular carcinoma (HCC) are suboptimal with no biomarkers to guide patient selection. "Humanized" mice represent promising models to address this deficiency but are limited by variable chimerism and underdeveloped myeloid compartments. We hypothesized that expression of human GM-CSF and IL-3 increases tumor immune cell infiltration, especially myeloid-derived cells, in humanized HCC patient-derived xenografts (PDXs).

View Article and Find Full Text PDF
Article Synopsis
  • Humanized mice created by transferring human stem cells into a specific type of NOG mouse develop mature human lymphoid cells, but struggle to produce fully differentiated human dendritic cells (DCs), which are vital for T cell activation.
  • Researchers engineered a new mouse model (hFLT3L-Tg) to promote human DC development, but encountered issues with low human cell engraftment due to interference from mouse myeloid cells caused by receptor cross-reactivity.
  • To resolve this, they utilized CRISPR technology to create a mouse model (FL Tg/KO) that blocks this interference, allowing for successful human cell engraftment and differentiation of various human DC types, making it a promising tool for studying human immune responses
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!