Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Head-mounted displays (HMDs) allow users to observe virtual environments (VEs) from an egocentric perspective. However, several experiments have provided evidence that egocentric distances are perceived as compressed in VEs relative to the real world. Recent experiments suggest that the virtual view frustum set for rendering the VE has an essential impact on the user's estimation of distances. In this article we analyze if distance estimation can be improved by calibrating the view frustum for a given HMD and user. Unfortunately, in an immersive virtual reality (VR) environment, a full per user calibration is not trivial and manual per user adjustment often leads to mini- or magnification of the scene. Therefore, we propose a novel per user calibration approach with optical see-through displays commonly used in augmented reality (AR). This calibration takes advantage of a geometric scheme based on 2D point - 3D line correspondences, which can be used intuitively by inexperienced users and requires less than a minute to complete. The required user interaction is based on taking aim at a distant target marker with a close marker, which ensures non-planar measurements covering a large area of the interaction space while also reducing the number of required measurements to five. We found the tendency that a calibrated view frustum reduced the average distance underestimation of users in an immersive VR environment, but even the correctly calibrated view frustum could not entirely compensate for the distance underestimation effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TVCG.2012.45 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!