Optical calcium imaging in the nervous system of Drosophila melanogaster.

Biochim Biophys Acta

Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Georg-August-University of Goettingen, Goettingen, Germany.

Published: August 2012

Background: Drosophila melanogaster is one of the best-studied model organisms in biology, mainly because of the versatility of methods by which heredity and specific expression of genes can be traced and manipulated. Sophisticated genetic tools have been developed to express transgenes in selected cell types, and these techniques can be utilized to target DNA-encoded fluorescence probes to genetically defined subsets of neurons. Neuroscientists make use of this approach to monitor the activity of restricted types or subsets of neurons in the brain and the peripheral nervous system. Since membrane depolarization is typically accompanied by an increase in intracellular calcium ions, calcium-sensitive fluorescence proteins provide favorable tools to monitor the spatio-temporal activity across groups of neurons.

Scope Of Review: Here we describe approaches to perform optical calcium imaging in Drosophila in consideration of various calcium sensors and expression systems. In addition, we outline by way of examples for which particular neuronal systems in Drosophila optical calcium imaging have been used. Finally, we exemplify briefly how optical calcium imaging in the brain of Drosophila can be carried out in practice.

Major Conclusions And General Significance: Drosophila provides an excellent model organism to combine genetic expression systems with optical calcium imaging in order to investigate principles of sensory coding, neuronal plasticity, and processing of neuronal information underlying behavior. This article is part of a Special Issue entitled Biochemical, Biophysical and Genetic Approaches to Intracellular Calcium Signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbagen.2012.02.013DOI Listing

Publication Analysis

Top Keywords

optical calcium
20
calcium imaging
20
nervous system
8
drosophila melanogaster
8
subsets neurons
8
intracellular calcium
8
expression systems
8
calcium
7
drosophila
6
optical
5

Similar Publications

Doxorubicin (DOX) is a commonly used chemotherapeutic medication for treating malignancies, although its cardiotoxicity limits its use. There is growing evidence that alteration of the mitochondrial fission/fusion dynamic processes accompanied by excessive reactive oxygen species (ROS) production and alteration of calcium Ca homeostasis are potential underlying mechanisms of DOX-induced cardiotoxicity (DIC). Metformin (Met) is an AMP-activated protein kinase (AMPK) activator that has antioxidant properties and cardioprotective effects.

View Article and Find Full Text PDF

Although animals can reliably locate and recognize odorants embedded in complex environments, the neural circuits for accomplishing these tasks remain incompletely understood. Adaptation is likely to be important as it could allow neurons in a brain area to adjust to the broader sensory environment. Adaptive processes must be flexible enough to allow the brain to make dynamic adjustments, while maintaining sufficient stability so that organisms do not forget important olfactory associations.

View Article and Find Full Text PDF

Background: Preclinical Alzheimer's disease research has gained traction as a potential point of intervention, though it is relatively unknown how early stages of the disease impact cortical health. The following study utilizes optical imaging methods (Figure 1) to characterize changes in neuronal, glutamate, and hemodynamic activities in a preclinical amyloidosis mouse model of the disease.

Method: Five (n = 5; 2 females & 3 males) APPswe/PS1dE9 x Thy1-jRGECO1a double transgenic mice were breed for whole-brain fluorescent imaging of neuronal activity.

View Article and Find Full Text PDF

Neuromodulators have major influences on the regulation of neural circuit activity across the nervous system. Nitric oxide (NO) has been shown to be a prominent neuromodulator in many circuits and has been extensively studied in the retina. Here, it has been associated with the regulation of light adaptation, gain control, and gap junctional coupling, but its effect on the retinal output, specifically on the different types of retinal ganglion cells (RGCs), is still poorly understood.

View Article and Find Full Text PDF

Actin instability alters red blood cell mechanics and Piezo1 channel activity.

Biomech Model Mechanobiol

January 2025

CNR Istituto Officina Dei Materiali, Area Science Park Basovizza, S.S. 14, Km 163,5, 34149, Trieste, Italy.

The organization and dynamics of the spectrin-actin membrane cytoskeleton play a crucial role in determining the mechanical properties of red blood cells (RBC). RBC are subjected to various forces that induce deformation during blood microcirculation. Such forces also regulate membrane tension, leading to Piezo1 channel activation, which is functionally linked to RBC dehydration through calcium influx and subsequent activation of Gardos channels, ultimately resulting in variations in RBC volume.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!