Functional response of hippocampal CA1 pyramidal cells to neonatal hypoxic-ischemic brain damage.

Neurosci Lett

Department of Neurobiology, College of Basic Medical Sciences, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China.

Published: May 2012

Perinatal hypoxic-ischemic (H-I) is a major cause of brain injury in the newborn. The hippocampus is more sensitive to H-I injury than the other brain regions. It is believed that H-I brain damage causes a loss of neurons in the central nervous system. The patterns of neuronal death include apoptosis and necrosis. With regard to the responses of neurons, the neural functional changes should be earlier than the morphologic changes. The aim of the present study is to evaluate the electrophysiological characteristics and the synaptic transmission functions. Seven-day-old Sprague-Dawley rat pups were randomly divided into sham operation and H-I groups. The patch clamp, immunohistochemistry and Western blotting techniques were used to achieve this objective. The results of the study showed a decrease in neuronal excitability and a significant increase in the frequency of spontaneous excitatory postsynaptic currents and the duration of EPSCs in the CA1 pyramidal cells of H-I brain damage rats. The glutamate transporter subtype 1 (GLT-1) expression level of the hippocampal CA1 area in the H-I group was decreased compared with the control. There was no difference in the amplitude of excitatory postsynaptic currents and should be no difference in the expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR), N-methyl-D-aspartate receptor (NMDAR) and synaptophysin between the control and H-I brain injury group. These results revealed that changes of electrophysiological characteristics and synaptic functions occur instantly after H-I brain damage in the hippocampal pyramidal cells of neonatal rats. The failure to eliminate glutamate should be one of the important factors of excitotoxicity injury on hippocampal CA1 pyramidal cells, while neuronal excitation was not increased in the H-I brain injury model.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2012.02.067DOI Listing

Publication Analysis

Top Keywords

h-i brain
20
pyramidal cells
16
brain damage
16
hippocampal ca1
12
ca1 pyramidal
12
brain injury
12
h-i
9
cells neonatal
8
brain
8
electrophysiological characteristics
8

Similar Publications

Background: Sodium-glucose cotransporter 2 inhibitors (SGLT2is) reportedly decreased the new-onset atrial arrhythmias in patients with type-2 diabetes (T2DM) or heart failure (HF). This study examined the impact of SGLT2is on catheter ablation for atrial fibrillation (AF) in HF patients without T2DM.

Methods: Persistent AF (PeAF) and HF (N-terminal prohormone of brain natriuretic peptide, NT-proBNP ≥400 pg/ml) patients without T2DM undergoing catheter ablation were prospectively enrolled (n = 102).

View Article and Find Full Text PDF

Key shifts in frontoparietal network activity in Parkinson's disease.

NPJ Parkinsons Dis

January 2025

Brain Electrophysiology and Epilepsy Lab (BEE-L), Epilepsy and EEG Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.

We aimed to study the effect of Parkinson's disease (PD) and motor-cognitive load on the interplay between activation level and spatial complexity. To that end, 68 PD patients and 30 controls underwent electroencephalography (EEG) recording while executing visual single- and dual- Go/No-go tasks. The EEG underwent source localization, followed by parcellation of the neural activity into 116 regions of interest.

View Article and Find Full Text PDF

Sex differences in the relationships between 24-h rest-activity patterns and plasma markers of Alzheimer's disease pathology.

Alzheimers Res Ther

December 2024

Faculty of Health, Medicine and Life Sciences, Mental Health and Neuroscience Research Institute, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands.

Background: Although separate lines of research indicated a moderating role of sex in both sleep-wake disruption and in the interindividual vulnerability to Alzheimer's disease (AD)-related processes, the quantification of sex differences in the interplay between sleep-wake dysregulation and AD pathology remains critically overlooked. Here, we examined sex-specific associations between circadian rest-activity patterns and AD-related pathophysiological processes across the adult lifespan.

Methods: Ninety-two cognitively unimpaired adults (mean age = 59.

View Article and Find Full Text PDF

Poststroke hyperglycemia dysregulates cap-dependent translation in neural cells.

Life Sci

January 2025

Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Neuroscience, School of Medicine, and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States; Department of Pharmaceutical Sciences, School of Pharmacy, Morgantown, WV, United States; Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, United States. Electronic address:

Aims: Post stroke hyperglycemia has been shown to deter functional recovery. Earlier findings have indicated the cap-dependent translation regulator 4E-BP1 is detrimentally upregulated in hyperglycemic conditions. The present study aims to test the hypothesis that hyperglycemic ischemic reperfusion injury (I/R) affects normal protein translation poststroke.

View Article and Find Full Text PDF

Background: Alzheimer's disease and related dementias (ADRD) and Parkinson's disease (PD) are the most common neurodegenerative conditions. These central nervous system disorders impact both the structure and function of the brain and may lead to imaging changes that precede symptoms. Patients with ADRD or PD have long asymptomatic phases that exhibit significant heterogeneity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!