Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
There has been a long standing interest in the relationship between genetic and phenotypic variation in natural populations, in order to understand the genetic basis of adaptation and to discover natural alleles to improve crops. Here we review recent developments in mapping approaches that have significantly improved our ability to identify causal polymorphism explaining natural variation in ecological and evolutionarily relevant traits. However, challenges in interpreting these discoveries remain. In particular, we need more detailed transcriptomic, epigenomic, and gene network data to help understand the mechanisms behind identified associations. Also, more studies need to be performed under field conditions or using experimental evolution to determine whether polymorphisms identified in the lab are relevant for adaptation and improvement under natural conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pbi.2012.02.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!