MutS homologue hMSH5: role in cisplatin-induced DNA damage response.

Mol Cancer

School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Mail Drop 64-7520, Pullman, WA 99164, USA.

Published: March 2012

Background: Cisplatin (cis-diamminedichloroplatinum (II), CDDP) and its analogues constitute an important class of anticancer drugs in the treatment of various malignancies; however, its effectiveness is frequently affected by mutations in genes involved in the repair and signaling of cisplatin-induced DNA damage. These observations necessitate a need for a better understanding of the molecular events governing cellular sensitivity to cisplatin.

Results: Here, we show that hMSH5 mediates sensitization to cisplatin-induced DNA damage in human cells. Our study indicates that hMSH5 undergoes cisplatin-elicited protein induction and tyrosine phosphorylation. Silencing of hMSH5 by RNAi or expression of hMSH5 phosphorylation-resistant mutant hMSH5Y742F elevates cisplatin-induced G2 arrest and renders cells susceptible to cisplatin toxicity at clinically relevant doses. In addition, our data show that cisplatin promotes hMSH5 chromatin association and hMSH5 deficiency increases cisplatin-triggered γ-H2AX foci. Consistent with a possible role for hMSH5 in recombinational repair of cisplatin-triggered double-strand breaks (DSBs), the formation of cisplatin-induced hMSH5 nuclear foci is hRad51-dependent.

Conclusion: Collectively, our current study has suggested a role for hMSH5 in the processing of cisplatin-induced DSBs, and silencing of hMSH5 may provide a new means to improve the therapeutic efficacy of cisplatin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3325843PMC
http://dx.doi.org/10.1186/1476-4598-11-10DOI Listing

Publication Analysis

Top Keywords

cisplatin-induced dna
12
dna damage
12
hmsh5
11
silencing hmsh5
8
role hmsh5
8
cisplatin-induced
6
muts homologue
4
homologue hmsh5
4
hmsh5 role
4
role cisplatin-induced
4

Similar Publications

Due to the lack of effective therapeutic approach, glioblastoma (GBM) remains one of the most malignant brain tumour. By in vitro investigations on primary GBM stem cells, we highlighted one of the underlying mechanisms of drug resistance to alkylating agents, the DNA damage responses. Here, flow cytometric analysis and viability and repopulation assays were used to assess the long-term cytotoxic effect induced by the administration of a fourth-generation platinum prodrug, the (OC-6-44)-acetatodiamminedichlorido(2-(2-propynyl)octanoato) platinum(IV) named Pt(IV)Ac-POA, in comparison to the most widely used Cisplatin.

View Article and Find Full Text PDF

Recent research has demonstrated that activating the cGAS-STING pathway can enhance interferon production and the activation of T cells. A manganese complex, called TPA-Mn, was developed in this context. The reactive oxygen species (ROS)-sensitive nanoparticles (NPMn) loaded with TPA-Mn are developed.

View Article and Find Full Text PDF

Barcoded screening identifies nanocarriers for protein delivery to kidney.

Nat Commun

January 2025

School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, P.R. China.

Targeted protein delivery with nanocarriers holds significant potential to enhance therapeutic outcomes by precisely directing proteins to specific organs or tissues. However, the complex interactions between nanocarriers and the biological environment pose considerable challenges in designing effective targeted delivery vehicles. In this study, we address this challenge by leveraging DNA-barcoded high-throughput screening.

View Article and Find Full Text PDF

The incidence rate and mortality rate of breast cancer remain high, and there is an urgent need for safe and effective drugs. The excellent biological activity of hesperidin (HE) is a potential drug for the treatment of breast cancer. In this study, silk fibroin peptides (SFP) were used as delivery carriers and HE loaded SFP nanofibers (SFP/HE NFs) was prepared.

View Article and Find Full Text PDF

Cisplatin is a widely used chemotherapeutic agent, but its clinical utility is limited by side effects affecting different systems and organs, including hepatotoxicity in some cases. Baicalin, a flavonoid isolated from Scutellaria baicalensis, possesses antioxidant, anti-inflammatory and hepatoprotective properties, but its low bioavailability limits its therapeutic use. This study aimed to investigate whether a nanoemulsion formulation of baicalin could enhance its efficacy against cisplatin-induced hepatic injury in rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!