Parametrically excited water surface ripples as ensembles of oscillons.

Phys Rev Lett

Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200, Australia.

Published: January 2012

We show that ripples on the surface of deep water which are driven parametrically by monochromatic vertical vibration represent ensembles of oscillating solitons, or quasiparticles, rather than waves. The horizontal mobility of oscillons determines the broadening of spectral lines and transitions from chaos to regular patterns. It is found that microscopic additions of proteins to water dramatically affect the oscillon mobility and drive transitions from chaos to order. The shape of the oscillons in physical space determines the shape of the frequency spectra of the surface ripple.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.108.034502DOI Listing

Publication Analysis

Top Keywords

transitions chaos
8
parametrically excited
4
excited water
4
water surface
4
surface ripples
4
ripples ensembles
4
ensembles oscillons
4
oscillons ripples
4
ripples surface
4
surface deep
4

Similar Publications

Analyzing the channels of information dissemination: Investigating abrupt transitions in resource investment.

Chaos

January 2025

Department of Applied Mathematics, College of Applied Sciences, Kyung Hee University, Yongin 17104, Republic of Korea.

Investment in resources is essential for facilitating information dissemination in real-world contexts, and comprehending the influence of resource allocation on information dissemination is, thus, crucial for the efficacy of collaborative networks. Nonetheless, current studies on information dissemination frequently fail to clarify the complex interplay between information distribution and resources in network contexts. In this work, we establish a resource-based information dissemination model to identify the complex interplay by examining the propagation threshold and equilibriums.

View Article and Find Full Text PDF

Generosity through donation plays a crucial role in reducing inequality and influencing human behavior. However, previous research on donation has overlooked individuals' acceptance of the extent of inequality, which acts as a trigger for donation. To address this gap, this paper systematically explores the impact of donation based on inequality tolerance on the evolution of cooperation in spatial public goods game.

View Article and Find Full Text PDF

Fecal microbiota transplantation: transitioning from chaos and controversial realm to scientific precision era.

Sci Bull (Beijing)

January 2025

Tenth People's Hospital of Tongji University, Shanghai 200072, China; Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China. Electronic address:

With the popularization of modern lifestyles, the spectrum of intestinal diseases has become increasingly diverse, presenting significant challenges in its management. Traditional pharmaceutical interventions have struggled to keep pace with these changes, leaving many patients refractory to conventional pharmaceutical treatments. Fecal microbiota transplantation (FMT) has emerged as a promising therapeutic approach for enterogenic diseases.

View Article and Find Full Text PDF

The Walrus Optimization (WO) algorithm, as an emerging metaheuristic algorithm, has shown excellent performance in problem-solving, however it still faces issues such as slow convergence and susceptibility to getting trapped in local optima. To this end, the study proposes a novel WO enhanced by quasi-oppositional-based learning and chaotic local search mechanisms, called QOCWO. The study aims to prevent premature convergence to local optima and enhance the diversity of the population by integrating the quasi-oppositional-based learning mechanism into the original Walrus Optimization (WO) algorithm, thereby improving the global search capability and expanding the search range.

View Article and Find Full Text PDF

ConspectusA key challenge in modern chemistry research is to mimic life-like functions using simple molecular networks and the integration of such networks into the first functional artificial cell. Central to this endeavor is the development of signaling elements that can regulate the cell function in time and space by producing entities of code with specific information to induce downstream activity. Such artificial signaling motifs can emerge in nonequilibrium systems, exhibiting complex dynamic behavior like bistability, multistability, oscillations, and chaos.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!