Forces acting on a small particle in an acoustical field in a viscous fluid.

Phys Rev E Stat Nonlin Soft Matter Phys

Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech Building 345 B, DK-2800 Kongens Lyngby, Denmark.

Published: January 2012

We calculate the acoustic radiation force from an ultrasound wave on a compressible, spherical particle suspended in a viscous fluid. Using Prandtl-Schlichting boundary-layer theory, we include the kinematic viscosity of the solvent and derive an analytical expression for the resulting radiation force, which is valid for any particle radius and boundary-layer thickness provided that both of these length scales are much smaller than the wavelength of the ultrasound wave (millimeters in water at megahertz frequencies). The acoustophoretic response of suspended microparticles is predicted and analyzed using parameter values typically employed in microchannel acoustophoresis.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.85.016327DOI Listing

Publication Analysis

Top Keywords

viscous fluid
8
radiation force
8
ultrasound wave
8
forces acting
4
acting small
4
small particle
4
particle acoustical
4
acoustical field
4
field viscous
4
fluid calculate
4

Similar Publications

A Droplet Microfluidic Sensor for Point-of-Care Measurement of Plasma/Serum Total Free Thiol Concentrations.

Anal Chem

January 2025

Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, U.K.

Total free thiols are an important marker of the whole-body redox state, which has been shown to be associated with clinical outcome in health and disease. Recent investigations have suggested that increased insight may be gained by monitoring alterations of redox state in response to exercise and hypoxia and to monitor redox trajectories in disease settings. However, conducting such studies is challenging due to the requirement for repeated venous blood sampling and intensive lab work.

View Article and Find Full Text PDF

Biomolecular condensates are dynamic intracellular entities defined by their sequence- and composition-encoded material properties. During aging, these properties can change dramatically, potentially leading to pathological solidlike states, the mechanisms of which remain poorly understood. Recent experiments reveal that the aging of condensates involves a complex interplay of solvent depletion, strengthening of sticker links, and the formation of rigid structural segments such as beta fibrils.

View Article and Find Full Text PDF

Towards a standard application of the Reynolds number in studies of aquatic animal locomotion.

J Exp Biol

January 2025

Department of Physics and Engineering Science, Coastal Carolina University, Conway, SC 29528, USA.

Nondimensional groups of measured quantities enable comparison between measurements of animals under different conditions and comparison between species. One of the most used such group is the Reynolds number, which compares inertial and viscous contributions to forces on swimming animals. This group includes two quantities that are chosen by the researcher: a typical length and speed.

View Article and Find Full Text PDF
Article Synopsis
  • Biomagnetic fluid dynamics (BFD) focuses on the behavior of bio-fluids, like blood, impacted by magnetic fields, which is important for medical applications such as targeted medication delivery and tumor treatment.
  • This study examines blood flow dynamics using trihybrid nanoparticles in a catheterized artery, factoring in various electromagnetic influences and propulsion mechanisms.
  • Key findings include that increasing Hall and ion-slip parameters boosts blood velocity, modifies entropy generation, and shows that modified hybrid nano-blood forms smaller, more manageable clumps compared to pure blood, with longer cilia enhancing recovery of these clumps.
View Article and Find Full Text PDF

Purpose: To develop a simple tool to remove retained submacular perfluorocarbon liquid bubbles (R-PFCL) and to inject recombinant tissue plasminogen activator safely in subretinal space in submacular hematomas.

Method: A retrospective, interventional study was performed where a simple homemade micro-viscous fluid control was developed to gain access to subretinal space in a controlled way. The rubber cap of the plunger of a 1-mL syringe was cut; this cut rubber cap of the plunger was fitted inside an empty 1-mL tuberculin syringe, and its end was fitted with the tubings of viscous fluid control of the vitrectomy machine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!