New carbon nanomaterials, i.e., carbon nanotubes and nanofibers, with special physico-chemical properties, are recently studied as support for methanol oxidation reaction electrocatalysts replacing the most widely used carbon black. Particularly, carbon fibrous structures with high surface area and available open edges are thought to be promising. Platelet type carbon nanofibers, which have the graphene layers oriented perpendicularly to the fiber axis, exhibit a high ratio of edge to basal atoms. Different types of carbon nanofibers (tubular and platelet) were grown by plasma enhanced chemical vapour deposition on carbon paper substrates. The process was controlled and optimised in term of growth pressure and temperature. Carbon nanofibers were characterised by high resolution scanning electron microscopy and X-ray photoelectron spectroscopy to assess the morphological properties. Then carbon nanofibers of both morphologies were used as substrates for Pt electrodeposition. High resolution scanning electron microscopy images showed that the Pt nanoparticles distribution was well controlled and the particles size went down to few nanometers. Pt/carbon nanofibers nanocomposites were tested as electrocatalysts for methanol oxidation reaction. Cyclic voltammetry in H2SO4 revealed a catalyst with a high surface area. Cyclic voltammetry in presence of methanol indicated a high electrochemical activity for methanol oxidation reaction and a good long time stability compared to a carbon black supported Pt catalyst.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2011.3464 | DOI Listing |
J Sep Sci
January 2025
Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, China.
Per- and polyfluoroalkyl substances (PFAS) are a widely used class of synthetic chemicals that pose a significant global environmental and health threat due to their persistent and bioaccumulation toxicity caused by strong C-F bonds in their structures. PFAS usually exist in trace concentrations in environmental water bodies, which poses great challenges for environmental analysis. In this study, environmentally friendly cellulose was modified with polyaniline through in situ oxidative polymerization, and used as the filter paper for solid-phase extracting 23 PFAS in water.
View Article and Find Full Text PDFSe Pu
February 2025
Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China.
Thromboxane A (TXA), a prothrombotic factor that induces platelet aggregation and thrombosis, acts as a vasoconstrictor by activating TXA receptors (TP receptors). TXA is extremely unstable and metabolizes into three major metabolites: 2,3-dinor thromboxane B (2,3-dinor-TXB), 11-dehydro TXB(11-dh-TXB), and 11-dehydro-2,3-dinor TXB(11-dh-2,3-dinor-TXB). 8-Iso-prostaglandin F(8-iso-PGF), a prostaglandin-like compound widely considered the best biomarker of oxidative stress, can also activate TP receptors.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Key Laboratory of Biomass Materials Science and Technology of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China; Collaborative Innovation Center of Forest Biomass Green Manufacturing of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China; Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China. Electronic address:
Lignin, as the largest renewable aromatic resource, has significant opportunities for producing high-value products via catalytic depolymerization. However, its complex structure and stable chemical bonds present challenges to its transformation. This study explores the catalytic depolymerization of lignin to aromatic monomers by means of Dawson-type phosphomolybdovanadate polyoxometalates (POMs), understanding the underlying mechanisms.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Computational Chemistry, Lund University, Chemical Centre, P. O. Box 124, SE-221 00 Lund, Sweden.
Particulate methane monooxygenase (pMMO) is the most efficient of the two groups of enzymes that can hydroxylate methane. The enzyme is membrane bound and therefore hard to study experimentally. For that reason, there is still no consensus regarding the location and nature of the active site.
View Article and Find Full Text PDFChem Biodivers
January 2025
Tokat Gaziosmanpasa University Faculty of Arts and Sciences: Tokat Gaziosmanpasa Universitesi Fen Edebiyat Fakultesi, Biology, Tokat, Tokat, TURKEY.
Astragalus tokatensis is a local endemic species and no study exists on this species. In this study, hexane, dichloromethane, methanol and water extracts were obtained from the parts of root, leaf and flower of A. tokatensis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!