Molding of nano structures by injection molding leads to special requirements for the tools e.g., wear resistance and as low as possible release forces of the molded components. On the other hand it is not allowed to affect the replication precision. Physical vapor deposition is one of the promising technologies for applying coatings with adapted properties like high hardness, low roughness, low Young's modulus and less adhesion to the plastics melt. Although physical vapor deposition technology allows the deposition of films on micro structures without changing the structure significantly, film deposition on nano structures and small micro structures leads to a relevant change in surface topography. For this reason direct structuring of physical vapor deposition coatings might be beneficial. In this paper structuring was done using a picoseconds ultraviolet laser, Lumera Laser "Rapid," with a master oscillator power amplifier system at 355 nm. Two different coatings were deposited by magnetron sputter ion plating physical vapor deposition technology for laser structuring tests ((Cr, Al)N, (Cr, Al,Si)N). After deposition, the coatings were analyzed by common techniques regarding hardness, Young's modulus and morphology. The structures were analyzed by scanning electron microscopy. The results show a high potential for laser structuring of coatings deposited via physical vapor deposition. Linear structures with sizes between 400 nm and 10microm were realized.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2011.3468 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!