Nanophosphors based on green emitting terbium doped yttrium silicates with the general formula Y2SiO5:Tb3+ with a size of 30-60 nm were synthesized by the hydrothermal method. The prepared nanophosphors were characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, UV-Vis diffuse reflectance spectroscopy and fluorescence spectroscopy. It was found that the nanophosphors crystallize in an X1-type monoclinic structure (P2(1)/c) and absorb UV light from 220 to 300 nm which they then down-convert into visible-light (strong green emission at around 545 nm (5D4-->7F(J. As TiO2-based dye-sensitized solar cells exhibit their maximum incident photon to current efficiency at around 500-600 nm, the wavelength-modulation characteristics of the nanophosphors can be efficient for dye-sensitized solar cell systems. Therefore, the Y2SiO5:Tb3+ nanophosphors were introduced into a TiO2-based dye-sensitized solar cell and their effects on the performance of the solar cell were investigated.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2011.3490DOI Listing

Publication Analysis

Top Keywords

dye-sensitized solar
12
solar cell
12
electron microscopy
8
tio2-based dye-sensitized
8
nanophosphors
6
synthesis characteristics
4
characteristics tb-doped
4
tb-doped y2sio5
4
y2sio5 nanophosphors
4
nanophosphors luminescent
4

Similar Publications

Recent advances in the development of enantiopure BODIPYs and some related enantiomeric compounds.

Chem Commun (Camb)

January 2025

Department of Chemistry, Khalifa University, SAN Campus, Abu Dhabi, United Arab Emirates.

During the process of developing smart chiroptical luminophores, small chiral organic dyes have emerged as candidates of utmost importance. In this regard, the chiral variants of boron dipyrromethene (BODIPY) serve as suitable molecules owing to their excellent photophysical properties such as high fluorescence quantum yields, narrow emission bandwidths with high peak intensities, high photo and chemical stability, and higher molar extinction coefficients. Thus, the last decade observed an influx of research from various research groups for the induction of chirality in originally achiral BODIPY.

View Article and Find Full Text PDF

Carbazoles are nitrogen-containing aromatic heterocycles, having widespread applications in the field of photovoltaics. Carbazole-based photosensitizers have tunable features for absorption on semi-conductor (tellurium dioxide or zinc oxide) layers to create sufficient push-pull force in the conversion of sunlight into electrical energy, thus presenting as promising heterocyclic donor candidates to be used in dye-sensitized solar cells. For the synthesis of these dyes, various structural designs are available, namely, D-A, D-π-A, D-D-π-A, D-A-π-A, A-π-D-π-A-π-A, and D2-π-A that all involve incorporating carbazole as a donor (D), along with spacer (π-extender) moieties, such as thiophene, phenol, ethynylene, nitromethane, azine, thiadiazole, or acetonitrile.

View Article and Find Full Text PDF

Ultra-fast prediction of D-π-A organic dye absorption maximum with advanced ensemble deep learning models.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt. Electronic address:

The quick and precise estimation of D-π-A Organic Dye absorption maxima in different solvents is an important challenge for the efficient design of novel chemical structures that could improve the performance of dye-sensitized solar cells (DSSCs) and related technologies. Time-Dependent Density Functional Theory (TD-DFT) has often been employed for these predictions, but it has limitations, including high computing costs and functional dependence, particularly for solvent interactions. In this study, we introduce a high-accuracy and rapid deep-learning ensemble method using daylight fingerprints as chemical descriptors to predict the absorption maxima (λ) of D-π-A organic dyes in 18 different solvent environments.

View Article and Find Full Text PDF

Interfacing CuO, CuBiO, and protective metal oxide layers to boost solar-driven photoelectrochemical hydrogen evolution.

Dalton Trans

December 2024

Energy Materials Laboratory, Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.

This article reports the development of CuO|CuBiO photocathodes stabilized by protective layers of TiO, MgO, or NiO, with Pt or MoS nanoparticles serving as co-catalysts to facilitate H evolution. Most notably, this work demonstrates the first application of MgO as a protection/passivation layer for photocathodes in a water-splitting cell. All configurations of photocathodes were studied structurally, morphologically, and photoelectrochemically revealing that CuO|CuBiO|MgO|Pt photocathodes achieve the highest stable photocurrent densities of -200 μA cm for over 3 hours with a Faradaic efficiency of ∼90%.

View Article and Find Full Text PDF

Advances in the use of metal-free tetrapyrrolic macrocycles as catalysts.

Beilstein J Org Chem

November 2024

School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK.

Article Synopsis
  • This review discusses advancements in catalysis using metal-free tetrapyrrolic macrocycles, specifically focusing on calix[4]pyrroles, porphyrins, and corroles.
  • It highlights the versatile applications of synthetic porphyrins in various fields, including organometallic catalysis, solar cells, and cancer treatment.
  • The review also examines how structural modifications of these macrocycles impact their efficiency as metal-free catalysts.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!