In temperate regions, seasonal epidemics of many mosquito-borne viruses are triggered when mosquito populations shift from feeding on avian to mammalian hosts. We investigated effects of temperature on the timing of bird-to-mammal shifts using an 8 year dataset of blood-meals from a mosquito (Culex erraticus) in Alabama, USA. As expected, Cx. erraticus shifted from avian to mammalian hosts each year. The timing of the shift, however, varied considerably among years. Harshness of the preceding winter (chill accumulation) explained 93 per cent of the variation in the timing of bird-to-mammal shifts, with shifts occurring later in years following harsher winters. We hypothesize that winter temperatures drive the timing of bird-to-mammal shifts through effects on host reproductive phenology. Because mosquitoes target birds during the nesting season, and bird nesting occurs later in years following colder winters, later nesting dates result in a concomitant delay in the timing of bird-to-mammal host shifts. Global increases in winter temperatures could cause significant changes in the timing of seasonal host shifts by mosquitoes, with prolonged periods of epidemic transmission of mosquito-borne diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3391461 | PMC |
http://dx.doi.org/10.1098/rsbl.2012.0075 | DOI Listing |
Biol Lett
August 2012
Department of Entomology and Plant Pathology, Auburn University, AL 36849, USA.
In temperate regions, seasonal epidemics of many mosquito-borne viruses are triggered when mosquito populations shift from feeding on avian to mammalian hosts. We investigated effects of temperature on the timing of bird-to-mammal shifts using an 8 year dataset of blood-meals from a mosquito (Culex erraticus) in Alabama, USA. As expected, Cx.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!