Visual working memory capacity and the medial temporal lobe.

J Neurosci

Departments of Psychology, Psychiatry, and Neurosciences, University of California, San Diego, California 92093, USA.

Published: March 2012

Patients with medial temporal lobe (MTL) damage are sometimes impaired at remembering visual information across delays as short as a few seconds. Such impairments could reflect either impaired visual working memory capacity or impaired long-term memory (because attention has been diverted or because working memory capacity has been exceeded). Using a standard change-detection task, we asked whether visual working memory capacity is intact or impaired after MTL damage. Five patients with hippocampal lesions and one patient with large MTL lesions saw an array of 1, 2, 3, 4, or 6 colored squares, followed after 3, 4, or 8 s by a second array where one of the colored squares was cued. The task was to decide whether the cued square had the same color as the corresponding square in the first array or a different color. At the 1 s delay typically used to assess working memory capacity, patients performed as well as controls at all array sizes. At the longer delays, patients performed as well as controls at small array sizes, thought to be within the capacity limit, and worse than controls at large array sizes, thought to exceed the capacity limit. The findings suggest that visual working memory capacity in humans is intact after damage to the MTL structures and that damage to these structures impairs performance only when visual working memory is insufficient to support performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3349278PMC
http://dx.doi.org/10.1523/JNEUROSCI.6444-11.2012DOI Listing

Publication Analysis

Top Keywords

working memory
28
memory capacity
24
visual working
20
array sizes
12
memory
8
capacity
8
medial temporal
8
temporal lobe
8
mtl damage
8
array colored
8

Similar Publications

Mobile Ad Hoc Networks (MANETs) are increasingly replacing conventional communication systems due to their decentralized and dynamic nature. However, their wireless architecture makes them highly vulnerable to flooding attacks, which can disrupt communication, deplete energy resources, and degrade network performance. This study presents a novel hybrid deep learning approach integrating Convolutional Neural Networks (CNN) with Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures to effectively detect and mitigate flooding attacks in MANETs.

View Article and Find Full Text PDF

Background: Respiratory motion during radiotherapy (RT) may reduce the therapeutic effect and increase the dose received by organs at risk. This can be addressed by real-time tracking, where respiration motion prediction is currently required to compensate for system latency in RT systems. Notably, for the prediction of future images in image-guided adaptive RT systems, the use of deep learning has been considered.

View Article and Find Full Text PDF

Objective: Professional bodies recommend the use of performance validity tests (PVTs) to aid the interpretation of scores obtained in neuropsychological assessments, but base rates of failure differ according to neurological diagnosis and the associated impairments. This review summarises the PVT literature in people with epilepsy with the aim of establishing base rates of PVT failure and the factors associated with PVT performance in this population.

Methods: Ovid and PubMed databases were searched for studies reporting PVT test performance in people with epilepsy.

View Article and Find Full Text PDF

Social networks are increasingly taking over daily life, creating a volume of unsecured data and making it very difficult to capture safe data, especially in times of crisis. This study aims to use a Convolutional Neural Network (CNN)-Long Short-Term Memory (LSTM)-based hybrid model for health monitoring and health crisis forecasting. It consists of efficiently retrieving safe content from multiple social media sources.

View Article and Find Full Text PDF

Objective: Difficulty updating information in working memory has been proposed to underlie ruminative thinking in individuals with anorexia nervosa (AN). However, evidence regarding updating difficulties in AN remains inconclusive, particularly among adolescents. It has been proposed that exposure to negative emotion and disorder-salient stimuli may uniquely influence updating in AN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!