The ability to acclimate to variable environmental conditions affects the biogeographic range of species, their success at colonizing new habitats, and their likelihood of surviving rapid anthropogenic climate change. Here we compared responses to temperature acclimation (4 weeks at 7, 13 and 19°C) in gill tissue of the warm-adapted intertidal blue mussel Mytilus galloprovincialis, an invasive species in the northeastern Pacific, and the cold-adapted M. trossulus, the native congener in the region, to better understand the physiological differences underlying the ongoing competition. Using two-dimensional gel electrophoresis and tandem mass spectrometry, we showed that warm acclimation caused changes in cytoskeletal composition and proteins of energy metabolism in both species, consistent with increasing rates of filtration and respiration due to increased ciliary activity. During cold acclimation, changes in cytoskeletal proteins were accompanied by increasing abundances of oxidative stress proteins and molecular chaperones, possibly because of the increased production of aldehydes as indicated by the upregulation of aldehyde dehydrogenase. The cold-adapted M. trossulus showed increased abundances of molecular chaperones at 19°C, but M. galloprovincialis did not, suggesting that the two species differ in their long-term upper thermal limits. In contrast, the warm-adapted M. galloprovincialis showed a stronger response to cold acclimation than M. trossulus, including changes in abundance in more proteins and differing protein expression profiles between 7 and 13°C, a pattern absent in M. trossulus. In general, increasing levels of oxidative stress proteins inversely correlate with modifications in Krebs cycle and electron transport chain proteins, indicating a trade-off between oxidative stress resistance and energy production. Overall, our results help explain why M. galloprovincialis has replaced M. trossulus in southern California over the last century, but also suggest that M. trossulus may maintain a competitive advantage at colder temperatures. Anthropogenic global warming may reinforce the advantage M. galloprovincialis has over M. trossulus in the warmer parts of the latter's historical range.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.062273DOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
blue mussel
8
mussel mytilus
8
temperature acclimation
8
cold-adapted trossulus
8
changes cytoskeletal
8
cold acclimation
8
stress proteins
8
molecular chaperones
8
trossulus
7

Similar Publications

Climate change has caused many challenges to soil ecosystems, including soil salinity. Consequently, many strategies are advised to mitigate this issue. In this context, biochar is acknowledged as a useful addition that can alleviate the detrimental impacts of salt stress on plants.

View Article and Find Full Text PDF

Cuproptosis, a newly identified form of cell death, has drawn increasing attention for its association with various cancers, though its specific role in colorectal cancer (CRC) remains unclear. In this study, transcriptomic and clinical data from CRC patients available in the TCGA database were analyzed to investigate the impact of cuproptosis. Differentially expressed genes linked to cuproptosis were identified using Weighted Gene Co-Expression Network Analysis (WGCNA).

View Article and Find Full Text PDF

NS1 binding protein regulates stress granule dynamics and clearance by inhibiting p62 ubiquitination.

Nat Commun

December 2024

Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Korea.

The NS1 binding protein, known for interacting with the influenza A virus protein, is involved in RNA processing, cancer, and nerve cell growth regulation. However, its role in stress response independent of viral infections remains unclear. This study investigates NS1 binding protein's function in regulating stress granules during oxidative stress through interactions with GABARAP subfamily proteins.

View Article and Find Full Text PDF

Research has shown various hydrolyzed proteins possessed beneficial physiological functions; however, the mechanism of how hydrolysates influence metabolism is unclear. Therefore, the current study aimed to examine the effects of different sources of protein hydrolysates, being the main dietary protein source in extruded diets, on metabolism in healthy adult dogs. Three complete and balanced extruded canine diets were formulated: control chicken meal diet (CONd), chicken liver and heart hydrolysate diet (CLHd), mechanically separated chicken hydrolysate diet (CHd).

View Article and Find Full Text PDF

The impact of antioxidant-ciprofloxacin combinations on the evolution of antibiotic resistance in Pseudomonas aeruginosa biofilms.

NPJ Biofilms Microbiomes

December 2024

Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, 2200, Denmark.

The evolution of antimicrobial resistance (AMR) in biofilms, driven by mechanisms like oxidative stress, is a major challenge. This study investigates whether antioxidants (AOs) such as N-acetyl-cysteine (NAC) and Edaravone (ED) can reduce AMR in Pseudomonas aeruginosa biofilms exposed to sub-inhibitory concentrations of ciprofloxacin (CIP). In vitro experimental evolution studies were conducted using flow cells and glass beads biofilm models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!