Background: The myelodysplastic syndromes (MDS) are a group of stem cell disorders characterized by dysplasia of one or more hematopoietic cell lineages and a risk of progression to acute myeloid leukemia. The cytidine analog azacitidine (Vidaza), a hypomethylating agent, improves survival in patients with MDS, but its mechanism of action is not well understood.
Materials And Methods: The effects of azacitidine on the MDS-derived cell line SKM-1 were investigated by DNA methylation assay, cell proliferation assay, and a subcutaneous xenograft mouse model.
Results: Azacitidine and decitabine induced hypomethylation of the tumor suppressor gene cyclin-dependent kinase 4 inhibitor B (CDKN2B) in SKM-1 cells, whereas the deoxycytidine analog cytarabine did not. Azacitidine and decitabine also inhibited SKM-1 cell growth in vitro. In the mouse xenograft model, azacitidine significantly suppressed tumor growth.
Conclusion: Inhibition of DNA methyltransferase by azacitidine contributes to its antiproliferative and antitumor effects against SKM-1 cells and may explain its clinical efficacy in MDS.
Download full-text PDF |
Source |
---|
Background: Somatostatin analogs (SSAs) binding to and activating somatostatin receptors (SSTRs) have been extensively used for the treatment of neuroendocrine tumors (NETs). The currently approved synthetic SSAs have high affinity for SSTR2 (octreotide/lanreotide), or for SSTR2 and SSTR5 (pasireotide). These agents have shown symptoms control and antiproliferative effects in subsets of NET patients and this was associated to the expression of the targeted SSTRs.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Life Sciences, College of Life Sciences, National Chung Hsing University, Kuo Kuang Rd., Taichung, 402, Taiwan.
Hepatocellular carcinoma (HCC) constitutes 90% of liver cancer cases and ranks as the third leading cause of cancer-related mortality, necessitating urgent development of alternative therapies. Lactoferrin (LF), a natural iron-binding glycoprotein with reported anticancer effects, is investigated for its potential in liver cancer treatment, an area with limited existing studies. This study focuses on evaluating LF's anti-liver cancer effects on HCC cells and assessing the preventive efficacy of oral LF administration in a murine model.
View Article and Find Full Text PDFJ Med Chem
December 2024
Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
Rearranged during transfection (RET) kinase is a validated therapeutic target for various cancers characterized by RET alterations. Although two selective RET inhibitors, selpercatinib and pralsetinib, have been approved by the FDA, acquired resistance through solvent-front mutations has been identified rapidly. Developing proteolysis targeting chimera (PROTAC) targeting RET mutations offers a promising strategy to combat drug resistance.
View Article and Find Full Text PDFCancer Lett
December 2024
Division of Collaborative Research and Developments, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Japan; Division of Translational Genomics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Japan. Electronic address:
KRAS inhibitors sotorasib and adagrasib have been approved for the treatment of KRAS-mutant non-small cell lung cancer (NSCLC). However, the efficacy of single-agent treatments is limited, presumably due to multiple resistance mechanisms. To overcome these therapeutic limitations, combination strategies that potentiate the antitumor efficacy of KRAS inhibitors must be developed.
View Article and Find Full Text PDFIUBMB Life
January 2025
Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India.
Non-steroidal anti-inflammatory drugs (NSAIDs) are recommended to treat moderate-to-severe pain. Previous studies suggest that NSAIDs can suppress cellular proliferation and elevate apoptosis in different cancer cells. Ketorolac is an NSAID and can reduce the cancer cells' viability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!