Purpose: To test targeted liposomes in an effort to improve drug transport across cellular barriers into the brain.
Methods: Therefore we prepared Mitoxantrone (MTO) entrapping, rigid and fluid liposomes, equipped with a 19-mer angiopeptide as ligand for LDL lipoprotein receptor related protein (LRP) targeting.
Results: Fluid, ligand bearing liposomes showed in vitro the highest cellular uptake and transcytosis and were significantly better than the corresponding ligand-free liposomes and rigid, ligand-bearing vesicles. Treatment of mice, transplanted with human breast cancer cells subcutaneously and into the brain, with fluid membrane liposomes resulted in a significant reduction in the tumor volume by more than 80% and in a clear reduction in drug toxicity. The improvement was mainly depended on liposome fluidity while the targeting contributed only to a minor degree. Pharmacokinetic parameters were also improved for liposomal MTO formulations in comparison to the free drug. So the area under the curve was increased and t(1/2) was extended for liposomes.
Conclusion: Our data show that it is possible to significantly improve the therapy of brain metastases if MTO-encapsulating, fluid membrane liposomes are used instead of free MTO. This effect could be further enhanced by fluid, ligand bearing liposomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11095-012-0723-7 | DOI Listing |
Biomedicines
December 2024
Quantitative, Translational and ADME Sciences, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061 Ludwigshafen, Germany.
Background/objectives: Neurodegenerative diseases are a major cause of morbidity and mortality worldwide, and their public health burden continues to increase. There is an urgent need to develop reliable and sensitive biomarkers to aid the timely diagnosis, disease progression monitoring, and therapeutic development for neurodegenerative disorders. Proteomic screening strategies, including antibody microarrays, are a powerful tool for biomarker discovery, but their findings should be confirmed using quantitative assays.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry and the Manitoba Institute for Materials, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba R3T 2N2, Canada.
The ability to manipulate excited-state decay cascades using molecular structure is essential to the application of abundant-metal photosensitizers and chromophores. Ligand design has yielded some spectacular results elongating charge-transfer excited state lifetimes of Fe(II) coordination complexes, but triplet metal-centered (MC) excited states─recently demonstrated to be critical to the photoactivity of isoelectronic Co(III) polypyridyls─have to date remained elusive, with temporally isolable examples limited to the picosecond regime. With this report, we show how strong-field donors and intramolecular π-stacking can conspire to stabilize a long-lived MC excited state for a remarkable 4.
View Article and Find Full Text PDFAdv Mater
January 2025
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China.
Formamidinium lead triiodide (FAPbI) perovskite quantum dot (PQD) are promising candidate for high-performing quantum dot photovoltaic due to its narrow bandgap, high ambient stability, and long carrier lifetime. However, the carrier transport blockage and nonradiative recombination loss, originating from the high-dielectric ligands and defects/trap states on the FAPbI PQD surface, significantly limit the efficiency and stability of its photovoltaic performance. In this work, through exploring dual-site molecular ligands, namely 2-thiophenemethylammonium iodide (2-TM) and 2-thiopheneethylammonium iodide (2-TE), a dual-phase synergistic ligand exchange (DSLE) protocol consisting of both solution-phase and solid-state ligand engineering is demonstrated.
View Article and Find Full Text PDFNat Commun
December 2024
Imperial College Parturition Research Group, Institute of Reproductive and Developmental Biology, Department of Metabolism Digestion and Reproduction, Imperial College London, London, UK.
Lactobacillus species dominance of the vaginal microbiome is a hallmark of vaginal health. Pathogen displacement of vaginal lactobacilli drives innate immune activation and mucosal barrier disruption, increasing the risks of STI acquisition and, in pregnancy, of preterm birth. We describe differential TLR mediated activation of the proinflammatory transcription factor NF-κB by vaginal pathogens and commensals.
View Article and Find Full Text PDFACS Nano
December 2024
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
Nanometer-thick ultrathin coatings with superior mechanical strength and desirable lubricating and antifouling performance are critical for the miniaturization of implantable medical devices. However, integrating these properties at the nanoscale remains challenging due to the inherent trade-off between mechanical strength and hydration as well as limitations in coating thickness. In this work, we address these challenges by employing dual-function metal coordination to construct a ∼25 nm thick bilayer structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!