β2-adrenergic receptor and astrocyte glucose metabolism.

J Mol Neurosci

Key Laboratory for Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong 250012, People's Republic of China.

Published: October 2012

Astrocyte glucose metabolism functions to maintain brain activity in both normal and stress conditions. Dysregulation of astrocyte glucose metabolism relates to development of neuronal disease, such as multiple sclerosis and Alzheimer's disease. In response to acute stress, beta2-adrenergic receptor is activated and initiates multiple signaling events mediated by Gs, Gi, arrestin, or other effectors depending on specific cellular contexts. In astrocytes, beta2-adrenergic receptor promotes glucose uptake through GLUT1 and accelerates glycogen degradation via coupling to Gs and second messenger cAMP-dependent pathway. Beta2-adrenergic receptor may regulate other steps in astrocyte glucose metabolism, such as lactate production or transduction. Inappropriate regulation of beta2-adrenergic receptor activity can disrupt normal glucose metabolism, and leads to accelerate neuronal disease development. It was demonstrated that the absence of beta2-adrenergic receptor in astrocytes occurred in multiple sclerosis patients, and the increased beta2-adrenergic receptor activity relates to Alzheimer's disease. A clear view of beta2-adrenergic receptor-mediated signaling pathways in regulating astrocyte glucose metabolism could help us to develop neuronal diseases treatment by targeting to the beta2-adrenergic receptor.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12031-012-9742-4DOI Listing

Publication Analysis

Top Keywords

beta2-adrenergic receptor
28
glucose metabolism
24
astrocyte glucose
20
neuronal disease
8
multiple sclerosis
8
alzheimer's disease
8
beta2-adrenergic
8
receptor activity
8
glucose
7
receptor
7

Similar Publications

Article Synopsis
  • The study investigates the effectiveness of immunoadsorption (IA) treatment on post-COVID myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) patients, focusing on those with elevated β2 adrenergic autoantibodies.
  • Patients underwent five IA sessions and showed significant improvement in physical functioning, fatigue, and other symptoms over six months, with 70% responding positively to the treatment.
  • The findings suggest that IA could be a beneficial therapy for alleviating symptoms in post-COVID ME/CFS patients, indicating a possible link between autoimmunity and the condition.
View Article and Find Full Text PDF

Background: Obstructive sleep apnea syndrome (OSAS) is a chronic syndrome, affecting about 1%-5% of children. OSAS is characterized by increased resistance and collapse of the upper airways, with different degrees of severity requiring interventions ranging from lifestyle modifications to surgery. Sympathetic activity is increased in OSAS, and the reduction of disease symptoms, occurring after adenotonsillectomy, correlates with biomarkers indicating a reduced sympathetic response.

View Article and Find Full Text PDF

Flavan-3-ols (FL) are poorly bioavailable astringent polyphenols that induce hyperactivation of the sympathetic nervous system. The aim of this study was to investigate the effects of repeated oral administration of FL on mice hindlimb skeletal muscle using immunohistochemical techniques. C57BL/6J male mice were orally administered 50 mg/kg of FL for a period of 2 weeks, and bromideoxyuridine (BrdU) was administered intraperitoneally 3 days prior to the dissection.

View Article and Find Full Text PDF

A small molecule enhances arrestin-3 binding to the β-adrenergic receptor.

bioRxiv

December 2024

Istanbul Medipol University, School of Engineering and Natural Sciences, Department of Biomedical Engineering, 34810, Istanbul, Turkey.

G protein-coupled receptor (GPCR) signaling is terminated by arrestin binding to a phosphorylated receptor. Binding propensity has been shown to be modulated by stabilizing the pre-activated state of arrestin through point mutations or C-tail truncation. Here, we hypothesize that pre-activated rotated states can be stabilized by small molecules, and this can promote binding to phosphorylation-deficient receptors, which underly a variety of human disorders.

View Article and Find Full Text PDF

Phenylacetylglycine (PAGly) is a small molecule derived from phenylalanine in the gut glycine degradation and conjugation. It has been associated with both the progression of atherosclerosis and protective effects on the myocardium. This study evaluated the function and the underlying mechanisms of PAGly in a rat cerebral ischemia/reperfusion (I/R) injury model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!