Background/aims: Glomerular kidney disease (GKD) is suspected in patients based on proteinuria, but its diagnosis relies primarily on renal biopsy. We used urine peptide profiling as a noninvasive means to link GKD-associated changes to each glomerular entity.

Methods: Urinary peptide profiles of 60 biopsy-proven glomerular patients and 14 controls were analyzed by combining magnetic bead peptide enrichment, MALDI-TOF MS analysis, and ClinProTools v2.0 to select differential peptides. Tentative identification of the differential peptides was carried out by HPLC-MS/MS.

Results: The HPLC-MS/MS results suggest that uromodulin (UMOD; m/z: 1682, 1898 and 1913) and α(1)-antitrypsin (A1AT; m/z: 1945, 2392 and 2505) are differentially expressed urinary peptides that distinguish between GKD patients and healthy subjects. Low UMOD and high A1AT peptide abundance was observed in 80-92% of patients with GKD. Proliferative forms of GKD were distinguished from nonproliferative forms, based on a combination of UMOD and A1AT peptides. Nonproliferative forms correlated with higher A1AT peptide levels - focal segmental glomerulosclerosis was linked more closely to high levels of the m/z 1945 peptide than minimal change disease.

Conclusion: We describe a workflow - urinary peptide profiling coupled with histological findings - that can be used to distinguish GKD accurately and noninvasively, particularly its nonproliferative forms.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000335383DOI Listing

Publication Analysis

Top Keywords

urinary peptide
12
nonproliferative forms
12
peptide
8
glomerular kidney
8
peptide profiling
8
differential peptides
8
m/z 1945
8
distinguish gkd
8
a1at peptide
8
gkd
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!