TNPO3 is a nuclear importer required for HIV-1 infection. Here, we show that depletion of TNPO3 leads to an HIV-1 block after nuclear import but prior to integration. To investigate the mechanistic requirement of TNPO3 in HIV-1 infection, we tested the binding of TNPO3 to the HIV-1 core and found that TNPO3 binds to the HIV-1 core. Overall, this work suggests that TNPO3 interacts with the incoming HIV-1 core in the cytoplasm to assist a process that is important for HIV-1 infection after nuclear import.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3347269PMC
http://dx.doi.org/10.1128/JVI.00451-12DOI Listing

Publication Analysis

Top Keywords

hiv-1 core
16
nuclear import
12
hiv-1 infection
12
hiv-1
9
required hiv-1
8
import prior
8
prior integration
8
binds hiv-1
8
core tnpo3
8
tnpo3 hiv-1
8

Similar Publications

Determining structures of RNA conformers using AFM and deep neural networks.

Nature

December 2024

Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.

Much of the human genome is transcribed into RNAs, many of which contain structural elements that are important for their function. Such RNA molecules-including those that are structured and well-folded-are conformationally heterogeneous and flexible, which is a prerequisite for function, but this limits the applicability of methods such as NMR, crystallography and cryo-electron microscopy for structure elucidation. Moreover, owing to the lack of a large RNA structure database, and no clear correlation between sequence and structure, approaches such as AlphaFold for protein structure prediction do not apply to RNA.

View Article and Find Full Text PDF

In vivo HIV-1 nuclear condensates safeguard against cGAS and license reverse transcription.

EMBO J

December 2024

Institut Pasteur, Advanced Molecular Virology Unit, Department of Virology, Université Paris Cité, 75015, Paris, France.

Entry of viral capsids into the nucleus induces the formation of biomolecular condensates called HIV-1 membraneless organelles (HIV-1-MLOs). Several questions remain about their persistence, in vivo formation, composition, and function. Our study reveals that HIV-1-MLOs persisted for several weeks in infected cells, and their abundance correlated with viral infectivity.

View Article and Find Full Text PDF

Background: An HIV-1 vaccine is long overdue. Although vaccine research focuses on the induction of broadly neutralising antibodies, challenging infections such as HIV-1 could require parallel induction of protective T cells. It is important to recognise that not all T cells contribute to protection equally.

View Article and Find Full Text PDF

Multiplexed Dual-Color Fluorescence-Based Distinction Between Nuclear Trapping and Translocation of FOXO3.

Methods Mol Biol

November 2024

Department of Cancer Biology, Sols-Morreale Biomedical Research Institute (IIBM), Spanish National Research Council (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain.

FOXO3 is a transcription factor that mainly exerts its functions in the cell nucleus. The amino acid sequence of FOXO3 contains a nuclear localization sequence (NLS) and a nuclear export sequence (NES) allowing for nuclear/cytoplasmic shuttling that plays an important role in regulating FOXO3 activity. Nuclear accumulation of FOXO3 proteins can be the result of translocation to the nucleus triggered by upstream regulatory input or trapping of FOXO3 within the nucleus through the inhibition of its nuclear export via the receptor CRM1.

View Article and Find Full Text PDF
Article Synopsis
  • HIV-1 infection remains a major global health issue, with around 30 million individuals receiving antiretroviral treatment, where integrase strand-transfer inhibitors (INSTIs) play a key role in effective therapy.
  • The research focuses on evaluating the off-target effects of clinically approved INSTIs on recombinase activating genes (RAG1 and RAG2), crucial for the immune system, using various biochemical and cellular tests.
  • Results indicate that approved INSTIs have minimal to no adverse effects on RAG activity and V(D)J recombination, supporting their continued use in HIV-1 treatment without significant immune system concerns.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!