Background: The kinome is made up of a large number of functionally diverse enzymes, with the classification indicating very little about the extent of the conserved kinetic mechanisms associated with phosphoryl transfer. It has been demonstrated that C8-H of ATP plays a critical role in the activity of a range of kinase and synthetase enzymes.
Results: A number of conserved mechanisms within the prescribed kinase fold families have been identified directly utilizing the C8-H of ATP in the initiation of phosphoryl transfer. These mechanisms are based on structurally conserved amino acid residues that are within hydrogen bonding distance of a co-crystallized nucleotide. On the basis of these conserved mechanisms, the role of the nucleotide C8-H in initiating the formation of a pentavalent intermediate between the γ-phosphate of the ATP and the substrate nucleophile is defined. All reactions can be clustered into two mechanisms by which the C8-H is induced to be labile via the coordination of a backbone carbonyl to C6-NH2 of the adenyl moiety, namely a "push" mechanism, and a "pull" mechanism, based on the protonation of N7. Associated with the "push" mechanism and "pull" mechanisms are a series of proton transfer cascades, initiated from C8-H, via the tri-phosphate backbone, culminating in the formation of the pentavalent transition state between the γ-phosphate of the ATP and the substrate nucleophile.
Conclusions: The "push" mechanism and a "pull" mechanism are responsible for inducing the C8-H of adenyl moiety to become more labile. These mechanisms and the associated proton transfer cascades achieve the proton transfer via different family-specific conserved sets of amino acids. Each of these mechanisms would allow for the regulation of the rate of formation of the pentavalent intermediate between the ATP and the substrate nucleophile. Phosphoryl transfer within kinases is therefore a specific event mediated and regulated via the coordination of the adenyl moiety of ATP and the C8-H of the adenyl moiety.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3327638 | PMC |
http://dx.doi.org/10.1186/1756-0500-5-131 | DOI Listing |
Nucleic Acids Res
January 2025
Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan.
J Neuroinflammation
January 2025
Department of Neurology, Division of Neuroimmunology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA.
Chronic innate immune activation in the central nervous system (CNS) significantly contributes to neurodegeneration in progressive multiple sclerosis (MS). Using multiple experimental autoimmune encephalomyelitis (EAE) models, we discovered that NLRX1 protects neurons in the anterior visual pathway from inflammatory neurodegeneration. We quantified retinal ganglion cell (RGC) density and optic nerve axonal degeneration, gliosis, and T-cell infiltration in Nlrx1 and wild-type (WT) EAE mice and found increased RGC loss and axonal injury in Nlrx1 mice compared to WT mice in both active immunization EAE and spontaneous opticospinal encephalomyelitis (OSE) models.
View Article and Find Full Text PDFAquat Toxicol
January 2025
Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China. Electronic address:
Conjugative transfer, a pivotal mechanism in the transmission of antimicrobial resistance genes, is susceptible to various environmental pollutants. As an emerging contaminant, lithium (Li) has garnered much attention due to its extensive applications. This research investigated the effects of Li on conjugative transfer process, examining biochemical and omics perspectives.
View Article and Find Full Text PDFExp Cell Res
January 2025
Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China. Electronic address:
To investigate the effect of a novel coumarin derivative, ethyl 2,2-difluoro-2 - (2-oxo-2H-chromen-3-yl) acetate (C2F), on the malignant biological behaviors of colorectal cancer (CRC) and elucidate its mechanism. In vitro, the effects of C2F on the proliferation, apoptosis, migration, invasion, and cell cycle of CRC cells were analyzed by MTT assay, EdU stainning, colony formation assay, flow cytometry, wound healing and transwell assay. The anti-CRC activity of C2F was evaluated in a nude mice xenograft model in vivo.
View Article and Find Full Text PDFMolecules
January 2025
Neuroscience and Signalling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal.
Alzheimer's disease is a challenge in modern healthcare due to its complex etiology and increasing prevalence. Despite advances, further understanding of Alzheimer's disease pathophysiology is needed, particularly the role of Aβ neurotoxic peptide. Fourier transform infrared spectroscopy (FTIR) has shown potential as a screening tool for several pathologies, including Alzheimer's disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!