Introduction: Coagulase-negative staphylococci are considered as microorganisms with little virulence and usually as contaminants. In order to establish the role of Staphylococcus epidermidis as a pathogen in diabetic foot osteomyelitis, in addition to the isolation of the sole bacterium from the bone it will be necessary to demonstrate the histopathological changes caused by the infection.

Methods: A consecutive series of 222 diabetic patients with foot osteomyelitis treated surgically in the Diabetic Foot Unit at La Paloma Hospital (Las Palmas de Gran Canaria, Canary Islands, Spain) between 1 October 2002 and 31 October 2008. From the entire series including 213 bone cultures with 241 isolated organisms, we have analyzed only the 139 cases where Staphylococci were found. We analyzed several variables between the two groups: Staphylococcus aureus versus Staphylococcus epidermidis.

Results: Of the 134 patients included in this study, Staphlylococcus epidermidis was found as the sole bacterium isolated in 11 cases and accompanied by other bacteria in 12 cases. Staphlylococcus aureus was found as the sole bacterium isolated in 72 cases and accompanied by other bacteria in 39 cases. Histopathological changes were found in the cases of osteomyelitis where Staphylococcus epidermidis was the sole bacterium isolated. Acute osteomyelitis was found to a lesser extent when Staphylococcus epidermidis was the sole bacterium isolated but without significant differences with the cases where Staphylococcus aureus was the sole bacterium isolated.

Conclusion: Staphylococcus epidermidis should be considered as a real pathogen, not only a contaminant, in diabetic patients with foot osteomyelitis when the bacterium is isolated from the bone. No differences in the outcomes of surgical treatment have been found with cases which Staphlylococcus aureus was isolated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3284277PMC
http://dx.doi.org/10.3402/dfa.v1i0.5418DOI Listing

Publication Analysis

Top Keywords

sole bacterium
24
staphylococcus epidermidis
20
bacterium isolated
20
foot osteomyelitis
16
diabetic foot
12
epidermidis sole
12
staphylococcus
8
histopathological changes
8
diabetic patients
8
patients foot
8

Similar Publications

The Functional and Structural Succession of Mesic-Grassland Soil Microbiomes Beneath Decomposing Large Herbivore Carcasses.

Environ Microbiol

January 2025

Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa.

Plant detritus is abundant in grasslands but decomposes slowly and is relatively nutrient-poor, whereas animal carcasses are labile and nutrient-rich. Recent studies have demonstrated that labile nutrients from carcasses can significantly alter the long-term soil microbial function at an ecosystem scale. However, there is a paucity of knowledge on the functional and structural response and temporal scale of soil microbiomes beneath large herbivore carcasses.

View Article and Find Full Text PDF

Marine bacteria play important roles in the degradation and recycling of algal polysaccharides. However, the marine bacteria involved in fucoidan degradation and their degradation pathways remain poorly understood. Here, we report the complete genome sequence of Isoptericola halotolerans SM2308, isolated from a brown algal sample collected from an intertidal zone of the Yellow Sea in China.

View Article and Find Full Text PDF

Plant growth-promoting rhizobacterium Sp7 utilizes fructose efficiently via a fructose phosphotransferase system (Fru-PTS). Its genome encodes two putative Fru-PTS, each consisting of FruB (EIIA), FruK (Pfk), and FruA (EIIBC) proteins. We compared the proteomes of Sp7 grown with malate or fructose as sole carbon source, and noticed upregulation of the constituent proteins of Fru-PTS1 only on fructose.

View Article and Find Full Text PDF

sp. strain p52, an aerobic dioxin degrader, was capable of utilizing petroleum hydrocarbons as the sole sources of carbon and energy for growth. In the present study, the degradation of the mixture of aliphatic hydrocarbons (hexadecane and tetradecane) and aromatic hydrocarbons (phenanthrene and anthracene) by strain p52 was examined.

View Article and Find Full Text PDF

Screening and isolation of polyethylene microplastic degrading bacteria from mangrove sediments in southern China.

Sci Total Environ

January 2025

College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China. Electronic address:

Mangrove sediments in southern China are a large reservoir for microplastics (MPs). In particular, polyethylene microplastics (PE-MPs) are environmentally toxic and have accumulated in large quantities in these sediments, posing a potential threat to the overall mangrove and the organisms that inhabit it. We screened sediments from 5 mangrove sites and identified a potential source of PE-MP degrading bacteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!