A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Exploring the evolution of novel enzyme functions within structurally defined protein superfamilies. | LitMetric

In order to understand the evolution of enzyme reactions and to gain an overview of biological catalysis we have combined sequence and structural data to generate phylogenetic trees in an analysis of 276 structurally defined enzyme superfamilies, and used these to study how enzyme functions have evolved. We describe in detail the analysis of two superfamilies to illustrate different paradigms of enzyme evolution. Gathering together data from all the superfamilies supports and develops the observation that they have all evolved to act on a diverse set of substrates, whilst the evolution of new chemistry is much less common. Despite that, by bringing together so much data, we can provide a comprehensive overview of the most common and rare types of changes in function. Our analysis demonstrates on a larger scale than previously studied, that modifications in overall chemistry still occur, with all possible changes at the primary level of the Enzyme Commission (E.C.) classification observed to a greater or lesser extent. The phylogenetic trees map out the evolutionary route taken within a superfamily, as well as all the possible changes within a superfamily. This has been used to generate a matrix of observed exchanges from one enzyme function to another, revealing the scale and nature of enzyme evolution and that some types of exchanges between and within E.C. classes are more prevalent than others. Surprisingly a large proportion (71%) of all known enzyme functions are performed by this relatively small set of 276 superfamilies. This reinforces the hypothesis that relatively few ancient enzymatic domain superfamilies were progenitors for most of the chemistry required for life.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3291543PMC
http://dx.doi.org/10.1371/journal.pcbi.1002403DOI Listing

Publication Analysis

Top Keywords

enzyme functions
12
enzyme
9
structurally defined
8
phylogenetic trees
8
enzyme evolution
8
superfamilies
6
exploring evolution
4
evolution novel
4
novel enzyme
4
functions structurally
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!