Ab initio molecular dynamics simulations accompanied by a Fourier transform of the dipole moment (aligned perpendicular to the surface) autocorrelation function are implemented to investigate the temperature-dependent infrared (IR) active vibrational modes of CH3C(β)C(α)(ads) and I(ads) when coadsorbed on an Ag(111) surface at 200 and 400 K, respectively. The analytic scheme of the Fourier transform of a structural coordinate autocorrelation function is used to identify two distinguishable IR active peaks of C(β)C(α) stretching, which are characterized by two types of dynamic motion of adsorbed CH3C(β)C(α)(ads) at 200 K, namely, the motion of the tilted CC(β)C(α) axis and the motion of the stand-up CC(β)C(α) axis. These two recognisable IR active peaks of C(β)C(α) stretching are gradually merged into one peak as a result of the dominant motion of the stand-up CC(β)C(α) axis as the temperature increases from 200 to 400 K. The calculated intensities of the IR active peaks of the asymmetrical deformation mode of CH3 and the asymmetrical stretching mode of CH3, with their dynamic dipole moments nearly perpendicular to the CC(β)C(α) axis, become relatively weak; however, the symmetrical deformation mode of CH3 and the symmetrical stretching mode of CH3, with their dynamic dipole moments randomly directed away from the CC(β)C(α) axis, will not have direct correspondence between the intensities of their IR active peaks and the angle between the Ag(111) surface and the CC(β)C(α) axis as the temperature increases from 200 to 400 K. Finally, the increased flipping from the motion of the tilted CC(β)C(α) axis to the motion of the stand-up CC(β)C(α) axis followed by its diffusion, resulting from the increasing temperature from 200 to 400 K or even higher, seems to be the initial event that initiates the alkyne self-coupling reaction that leads to the final production of H3CCCCCCH3.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcc.22958 | DOI Listing |
Orthop Surg
January 2025
Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, China.
Objective: Robotic-assisted total knee arthroplasty (TKA) is a novel orthopedic technique. The workflow of robotic-assisted TKA is quite different from that of traditional manual TKA and may result incompletely different resection parameters. Understanding these parameters may help surgeons better perform robotic-assisted TKA.
View Article and Find Full Text PDFZool Res
January 2025
Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong 518057, China.
DNA2, a multifunctional enzyme with structure-specific nuclease, 5 -to-3 helicase, and DNA-dependent ATPase activities, plays a pivotal role in the cellular response to DNA damage. However, its involvement in cerebral ischemia/reperfusion (I/R) injury remains to be elucidated. This study investigated the involvement of DNA2 in cerebral I/R injury using conditional knockout (cKO) mice ( -Cre) subjected to middle cerebral artery occlusion (MCAO), an established model of cerebral I/R.
View Article and Find Full Text PDFCirc Res
January 2025
Key Laboratory of Drug Targets and Translational Medicine for Cardio-cerebrovascular Diseases, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Jiangsu, China (X.T., X.L., X.S., Y. Zhang, Y. Zu, Q.F., L.H., S.S., F.C., L.X., Y.J.).
Background: The decrease in S-nitrosoglutathione reductase (GSNOR) leads to an elevation of S-nitrosylation, thereby exacerbating the progression of cardiomyopathy in response to hemodynamic stress. However, the mechanisms under GSNOR decrease remain unclear. Here, we identify NEDD4 (neuronal precursor cell expressed developmentally downregulated 4) as a novel molecule that plays a crucial role in the pathogenesis of pressure overload-induced cardiac hypertrophy, by modulating GSNOR levels, thereby demonstrating significant therapeutic potential.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
January 2025
School of Life Science, Nantong Laboratory of Development and Diseases and Co-Innovation Center of Neuroregeneration, Nantong University, China.
Background: Sprouting blood vessels, reaching the aimed location, and establishing the proper connections are vital for building vascular networks. Such biological processes are subject to precise molecular regulation. So far, the mechanistic insights into understanding how blood vessels grow to the correct position are limited.
View Article and Find Full Text PDF3 Biotech
February 2025
CSIR Institute of Genomics & Integrative Biology, Sukhdev Vihar, New Delhi, 110025 India.
Unlabelled: Insulin resistance is major factor in the development of metabolic syndrome and type 2 diabetes (T2D). We extracted 430 genes from literature associated with both insulin resistance and inflammation. The highly significant pathways were Toll-like receptor signaling, PI3K-Akt signaling, cytokine-cytokine receptor interaction, pathways in cancer, TNF signaling, and NF-kappa B signaling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!