On-stage liquid-phase lipid microextraction coupled to nanospray mass spectrometry for detailed, nano-scale lipid analysis.

Rapid Commun Mass Spectrom

Center for Plant Lipid Research, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA.

Published: April 2012

Rationale: Developments in instrumentation aimed at microscopic sampling have led to an emphasis on applications analyzing small volumes and molecular concentrations within biological, chemical, and industrial samples. Simultaneous improvements in the sensitivity and versatility of nanospray mass spectrometers have made it possible to directly couple these sampling and analysis processes.

Methods: We developed a versatile liquid-phase lipid microextraction (LPME) technique for nanoliter to microliter volumes that is amenable to direct nanospray mass spectrometry (NMS). Lipophilic analytes within several types of biological samples were extracted and analyzed by partitioning and concentrating the analytes based on their solubility within two immiscible or partially miscible liquid phases.

Results: The utility of LPME-NMS is demonstrated by extracting and analyzing molecules in four different types of applications: (1) visualization of an extracted neutral lipid-specific fluorescent dye from an aqueous solvent; (2) identification of controlled acid-catalyzed hydrolysis of triacylglycerols within nanospray capillaries; (3) reproducible sampling of a fatty acid emulsion; and (4) profiling of diverse lipids in a complex biological matrix of rabbit serum.

Conclusions: The modified instrumentation of a multi-port, on-stage bioworkstation shows considerable versatility by combining nanomanipulation, microextraction and direct NMS for a variety of chemical, biological, industrial, and clinical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.6194DOI Listing

Publication Analysis

Top Keywords

nanospray mass
12
liquid-phase lipid
8
lipid microextraction
8
mass spectrometry
8
on-stage liquid-phase
4
microextraction coupled
4
nanospray
4
coupled nanospray
4
spectrometry detailed
4
detailed nano-scale
4

Similar Publications

Spatial metabolomics platform combining mass spectrometry imaging and in-depth chemical characterization with capillary electrophoresis.

Talanta

January 2025

Department of Chemistry-BMC, Uppsala University, 75123, Uppsala, Sweden; Center of Excellence for the Chemical Mechanisms of Life, Uppsala University, Sweden. Electronic address:

Spatial metabolomics offers the combination of molecular identification and localization. As a tool for spatial metabolomics, mass spectrometry imaging (MSI) can provide detailed information on localization. However, molecular annotation with MSI is challenging due to the lack of separation prior to mass spectrometric analysis.

View Article and Find Full Text PDF

Ambient mass spectrometry imaging (MSI) enables hundreds of analytes in tissue sections to be directly mapped at atmospheric pressure with minimal sample preparation. This field is currently experiencing rapid growth, with numerous reported ambient ionization techniques resulting in a "hundred flowers bloom" situation. Nanospray desorption electrospray ionization (nano-DESI), developed by the Laskin group in 2010, is a widely used liquid-extraction-based ambient ionization technique that was first used for mass spectrometry imaging of tissue in 2012.

View Article and Find Full Text PDF

A tri-protein complex containing NICD, RBPj and MAML1 binds DNA as monomer or as cooperative dimers to regulate transcription. Mice expressing Notch dimerization-deficient alleles (NDD) of Notch1 and Notch2 are sensitized to environmental insults but otherwise develop and age normally. Transcriptomic analysis of colonic spheroids uncovered no evidence of dimer-dependent target gene miss-regulation, confirmed impaired stem cell maintenance in-vitro, and discovered an elevated signature of epithelial innate immune response to symbionts, a likely underlying cause for heightened sensitivity in NDD mice.

View Article and Find Full Text PDF

Native mass spectrometry analysis of proteins directly from tissues can be performed by using nanospray-desorption electrospray ionization (nano-DESI). Typically, supplementary collisional activation is essential to decluster protein complex ions from solvent, salt, detergent, and lipid clusters that comprise the ion beam. As an alternative, we have implemented declustering by infrared (IR) photoactivation on a linear ion trap mass spectrometer equipped with a CO laser (λ = 10.

View Article and Find Full Text PDF

Spatial metabolomics has emerged as a powerful tool capable of revealing metabolic gradients throughout complex heterogeneous tissues. While mass spectrometry imaging (MSI) technologies designed to generate spatial metabolomic data have improved significantly over time, metabolite coverage is still a significant limitation. It is possible to achieve deeper metabolite coverage by imaging in positive and negative polarities or imaging several serial sections with different targeted biomolecular classes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!