Perpendicular exchange bias in ferrimagnetic spin valves.

Nat Commun

Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin, Germany.

Published: March 2012

The exchange bias effect refers to the shift of the hysteresis loop of a ferromagnet in direct contact to an antiferromagnet. For applications in spintronics a robust and tunable exchange bias is required. Here we show experimental evidence for a perpendicular exchange bias in a prototypical ferrimagnetic spin valve consisting of DyCo(5)/Ta/Fe(76)Gd(24), where the DyCo(5) alloy has the role of a hard ferrimagnet and Fe(76)Gd(24) is a soft ferrimagnet. Taking advantage of the tunability of the exchange coupling between the ferrimagnetic layers by means of thickness variation of an interlayer spacer, we demonstrate that perpendicular unidirectional anisotropy can be induced with desirable absolute values at room temperature, without making use of a field-cooling procedure. Moreover, the shift of the hysteresis loop can be reversed with relatively low magnetic fields of several hundred Oersteds. This flexibility in controlling a robust perpendicular exchange bias at room temperature may be of crucial importance for applications.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncomms1728DOI Listing

Publication Analysis

Top Keywords

exchange bias
20
perpendicular exchange
12
ferrimagnetic spin
8
shift hysteresis
8
hysteresis loop
8
room temperature
8
bias
5
exchange
5
perpendicular
4
bias ferrimagnetic
4

Similar Publications

Rationally manipulating the in-situ formed catalytically active surface of catalysts remains a significant challenge for achieving highly efficient water electrolysis. Herein, we present a bias-induced activation strategy to modulate in-situ Ga leaching and trigger the dynamic surface restructuring of lamellar Ir@Ga2O3 for the electrochemical oxygen evolution reaction. The in-situ reconstructed Ga-O-Ir interface sustains high water oxidation rates at OER overpotentials.

View Article and Find Full Text PDF

The hybrid magnetic heterostructures and superlattices, composed of organic and inorganic materials, have shown great potential for quantum computing and next-generation information technology. Organic materials generally possess designable structural motifs and versatile optical, electronic, and magnetic properties, but are too delicate for robust integration into solid-state devices. In contrast, inorganic systems provide robust solid-state interface and excellent electronic properties but with limited customization space.

View Article and Find Full Text PDF

In-droplet hydrogen/deuterium exchange (HDX)-mass spectrometry (MS) experiments have been conducted for peptides of highly varied conformational type. A new model is presented that combines the use of protection factors (PF) from molecular dynamics (MD) simulations with intrinsic HDX rates ( ) to obtain a structure-to-reactivity calibration curve. Using the model, the relationship of peptide structural flexibility and HDX reactivity for different peptides is elucidated.

View Article and Find Full Text PDF

Ultrahigh Exchange Bias Field/Coercive Field Ratio in In Situ Formed Two-Dimensional Magnetic Te-CrO/CrTe Heterostructures.

Adv Mater

January 2025

Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China.

The exchange bias (EB) effect is a fundamental magnetic phenomenon, in which the exchange bias field/coercive field ratio (|H/H|) can improve the stability of spintronic devices. Two-dimensional (2D) magnetic heterostructures have the potential to construct low-power and high-density spintronic devices, while their typically air unstable and |H/H| lesser, limiting the possibility of applications. Here, 2D CrTe nanosheets have been systematically synthesized with an in situ formed ≈2 nm-thick Te doped CrO layer (Te-CrO) on the upper surface by chemical vapor deposition (CVD) method.

View Article and Find Full Text PDF

Supercapacitors are rapidly gaining attention as next-generation energy storage devices due to their superior power and energy densities. This study pioneers the investigation of Mn/Zn co-doping in α-Cu₂V₂O₇ (CVO) to enhance its performance as a supercapacitor electrode material. Structural and local Structural properties of Mn/Zn co-doped CVO have been investigated through X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), and X-ray Absorption Spectroscopy (XAS), revealing significant distortions that enhance supercapacitor performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!