The Reg3 peptides INGAP-PP and human Reg3α/β (HIP) have been hypothesized to stimulate β-cell neogenesis in the pancreas. Administration of INGAP-PP has been shown to cause an increase in β-cell mass in multiple animal models, reverse streptozotocin (STZ) induced diabetes in mice and reduces HbA1c levels in type 2 diabetic humans. In this study, we have examined the ability of the INGAP-PP and HIP peptides to induce β-cell formation in vivo in normal mice through short-term administration of the peptides. We assessed the peptides ability to induce an increase in extra-islet insulin-positive cell clusters by looking at β-cell number by point counting morphometry on pancreata that had been randomized using the smooth fractionator principle in non-diabetic NMRI mice after short-term injections of the peptides (5 d). Five day continuous BrdU labeling was used to determine if the new β-cells were derived from replicating β-cells. Real time quantitative RT-PCR and immuno-histochemistry was used to analyze changes in pancreatic transcription factor expression. A 1.5- to 2-fold increase in the volume of small extra-islet insulin-positive clusters post 5 d treatment with INGAP-PP and HIP as compared with mice treated with a non-peptide control or scrambled peptide (p<0.05) (n = 7) was found. Five day continuous BrdU infusion during the 5 d period showed little or no incorporation in islets or small insulin clusters. Five days of treatment with INGAP-PP or HIP, showed a tendency toward increased levels of pancreatic progenitor markers such as Ngn3, Nkx6.1, Sox9 and Ins. These are the first studies to compare and indicate that the human Reg3 α/β (HIP) peptide has similar bioactivity in vivo as INGAP by causing formation of small β-cell clusters in extra-islet pancreatic tissue after only 5 d of treatment. Upregulation of pancreatic transcription factors may be part of the mechanism of action.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4161/isl.18659 | DOI Listing |
The Reg3 peptides INGAP-PP and human Reg3α/β (HIP) have been hypothesized to stimulate β-cell neogenesis in the pancreas. Administration of INGAP-PP has been shown to cause an increase in β-cell mass in multiple animal models, reverse streptozotocin (STZ) induced diabetes in mice and reduces HbA1c levels in type 2 diabetic humans. In this study, we have examined the ability of the INGAP-PP and HIP peptides to induce β-cell formation in vivo in normal mice through short-term administration of the peptides.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!