The conversion of solar energy to chemical energy useful for maintaining cellular function in photosynthetic algae and cyanobacteria relies critically on light delivery to the microorganisms. Conventional direct irradiation of a bulk suspension leads to non-uniform light distribution within a strongly absorbing culture, and related inefficiencies. The study of small colonies of cells in controlled microenvironments would benefit from control over wavelength, intensity, and location of light energy on the scale of the microorganism. Here we demonstrate that the evanescent light field, confined near the surface of a waveguide, can be used to direct light into cyanobacteria and successfully drive photosynthesis. The method is enabled by the synergy between the penetration depth of the evanescent field and the size of the photosynthetic bacterium, both on the order of micrometres. Wild type Synechococcus elongatus (ATCC 33912) cells are exposed to evanescent light generated through total internal reflection of red (λ = 633 nm) light on a prism surface. Growth onset is consistently observed at intensity levels of 79 ± 10 W m(-2), as measured 1 μm from the surface, and 60 ± 8 W m(-2) as measured by a 5 μm depthwise average. These threshold values agree well with control experiments and literature values based on direct irradiation with daylight. In contrast, negligible growth is observed with evanescent light penetration depths less than the minor dimension of the rod-like bacterium (achieved at larger light incident angles). Collectively these results indicate that evanescent light waves can be used to tailor and direct light into cyanobacteria, driving photosynthesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c2cp40271h | DOI Listing |
Microsc Res Tech
January 2025
Department of Computer Science, Cihan University, Sulaimaniyah, Kurdistan Region, Iraq.
Waveguide evanescent field fluorescence microscopy (WEFF) is an evanescent-based microscopy that utilizes a confined thin film of light, around 100 nm, to image the plasma membrane of cells attached to a waveguide. Low photobleaching and low background besides its high axial resolution allows time-lapse imaging to investigate changes in cell morphology in the presence or absence of chemical agents. Both large field of view (FOV) and uniform illumination are very important while imaging cell-substrate contacts with an evanescent field.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China.
Harnessing chiral optical forces facilitates numerous applications in enantioselective sorting and sensing. To date, significant challenges persist in substantiating the holistic complex theorem of these forces as experimental demonstrations employ common light waves (e.g.
View Article and Find Full Text PDFNanoscale
December 2024
Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, Campinas, SP 13083-859, Brazil.
We use non-resonant Raman scattering to demonstrate a large enhancement of the effective refractive index experienced by Raman photons in a scattering medium comprising spatially-correlated photonic structures of core-shell TiO@Silica scatterers mixed with silica nanoparticles and suspended in ethanol. We show that the high refractive index extends outside the physical boundary of the medium, which is attributed to the evanescent contributions of electromagnetic modes that are strongly localized within the medium. Notably, the effective enhancement can be observed even at very low intensities of Raman emission.
View Article and Find Full Text PDFAdv Mater
December 2024
Institute for Chemical and Bioengineering, ETH Zürich, Zürich, 8093, Switzerland.
In the last decade, momentous progress in lead halide perovskite (LHP) light-emitting diodes (LEDs) is witnessed as their external quantum efficiency (η) has increased from 0.1 to more than 30%. Indeed, perovskite LEDs (PeLEDs), which can in principle reach 100% internal quantum efficiency as they are not limited by the spin-statistics, are reaching their full potential and approaching the theoretical limit in terms of device efficiency.
View Article and Find Full Text PDFMetasurfaces have demonstrated significant potential in optical encryption and anti-counterfeiting due to their incredible capability of manipulating various light properties. However, previous metasurface-encryption methods did not sufficiently explore the spatial frequency aspect, particularly regarding evanescent waves. Here, we propose an encryption scheme by introducing evanescent waves into the encoding and decoding processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!