Amorphous silicon nanocone array solar cell.

Nanoscale Res Lett

Graduate Institute of Optoelectronic Engineering, Department of Electrical Engineering, National Chung Hsing University, Taichung, 40227, Taiwan, Republic of China.

Published: March 2012

In the hydrogenated amorphous silicon [a-Si:H]-thin film solar cell, large amounts of traps reduce the carrier's lifetime that limit the photovoltaic performance, especially the power conversion efficiency. The nanowire structure is proposed to solve the low efficiency problem. In this work, we propose an amorphous silicon [a-Si]-solar cell with a nanocone array structure were implemented by reactive-ion etching through a polystyrene nanosphere template. The amorphous-Si nanocone exhibits absorption coefficient around 5 × 105/cm which is similar to the planar a-Si:H layer in our study. The nanostructure could provide the efficient carrier collection. Owing to the better carrier collection efficiency, efficiency of a-Si solar cell was increased from 1.43% to 1.77% by adding the nanocone structure which has 24% enhancement. Further passivation of the a-Si:H surface by hydrogen plasma treatment and an additional 10-nm intrinsic-a-Si:H layer, the efficiency could further increase to 2.2%, which is 54% enhanced as compared to the planar solar cell. The input-photon-to-current conversion efficiency spectrum indicates the efficient carrier collection from 300 to 800 nm of incident light.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3310725PMC
http://dx.doi.org/10.1186/1556-276X-7-172DOI Listing

Publication Analysis

Top Keywords

solar cell
16
amorphous silicon
12
carrier collection
12
nanocone array
8
conversion efficiency
8
efficient carrier
8
efficiency
6
cell
5
nanocone
4
silicon nanocone
4

Similar Publications

Achieving rational control over chemical and energetic properties at the perovskite/electron transport layer (ETL) interface is crucial for realizing highly efficient and stable next-generation inverted perovskite solar cells (PSCs). To address this, we developed multifunctional ferrocene (Fc)-based interlayers engineered to exhibit adjustable passivating and electrochemical characteristics. These interlayers are designed to minimize non-radiative recombination and, to modulate the work function (WF) and uniformity of the perovskite surface, thereby enhancing device performance.

View Article and Find Full Text PDF

Chemically tuned organic-inorganic hybrid halide perovskites based on bromide and chloride anions CH(NH)Pb(BrCl) (CH(NH): formamidinium ion, FA) have been crystallized and investigated by neutron powder diffraction (NPD), single crystal X-ray diffraction (SCXRD), scanning electron microscopy (SEM) and UV-vis spectroscopy. FAPbBr and FAPbCl experience successive phase transitions upon cooling, lowering the symmetry from cubic to orthorhombic phases; however, these transitions are not observed for the mixed halide phases, probably due to compositional disorder. The band-gap engineering brought about by the chemical doping of FAPb (BrCl) perovskites (x = 0.

View Article and Find Full Text PDF

Assembly and Quantification of Co-Cultures Combining Heterotrophic Yeast with Phototrophic Sugar-Secreting Cyanobacteria.

J Vis Exp

December 2024

Institute for Synthetic Microbiology, Heinrich Heine University Düsseldorf; Department of Biochemistry and Molecular Biology, Michigan State University.

With the increasing demand for sustainable biotechnologies, mixed consortia containing a phototrophic microbe and heterotrophic partner species are being explored as a method for solar-driven bioproduction. One approach involves the use of CO2-fixing cyanobacteria that secrete organic carbon to support the metabolism of a co-cultivated heterotroph, which in turn transforms the carbon into higher-value goods or services. In this protocol, a technical description to assist the experimentalist in the establishment of a co-culture combining a sucrose-secreting cyanobacterial strain with a fungal partner(s), as represented by model yeast species, is provided.

View Article and Find Full Text PDF

Fluorinated Benzothiadiazole-Based Polymers for Organic Solar Cells: Progress and Prospects.

ACS Mater Au

January 2025

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.

The integration of fluorinated benzothiadiazole (FBT) into donor-acceptor (D-A) copolymers represents a major advancement in the field of organic solar cells (OSCs). The fluorination process effectively fine-tunes the energy levels, reduces the highest occupied molecular orbital levels, and enhances the open-circuit voltages of the polymers. Furthermore, fluorination improves molecular packing and crystallinity, which significantly boosts the charge transport and overall device performance.

View Article and Find Full Text PDF

Dye sensitized solar cells: Meta-analysis of effect sensitizer-type on photovoltaic efficiency.

Heliyon

January 2025

Grupo de Investigación en Fotoquímica y Fotobiología, Programa de Química, Facultad de Ciencias Básicas, Universidad Del Atlántico, Puerto Colombia, 81007, Colombia.

Since Dye-Sensitized Solar Cells (DSSCs) was created, a versatile and cost-effective alternative among photovoltaic technology options for power generation and energy transition to combat climate change have emerged. The theoretical and experimental knowledge of DSSCs have increased in regard to their operation in the last three decades of development; it includes the device's components, as well as the most recent innovations in their application and forms of activation. In this work paper, we presented a meta-study of photovoltaic characterization parameters, 329 scientific reports of DSSCs were considered to compare three types of sensitizers (Organometallics, non-metal organic dyes and, natural dyes).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!